scholarly journals Maternal gut microbes shape the early-life assembly of gut microbiota in passerine chicks via nests

Microbiome ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Cheng-Yu Chen ◽  
Chih-Kuan Chen ◽  
Yi-Ying Chen ◽  
Andrew Fang ◽  
Grace Tzun-Wen Shaw ◽  
...  

Abstract Background Knowledge is growing on how gut microbiota are established, but the effects of maternal symbiotic microbes throughout early microbial successions in birds remain elusive. In this study, we examined the contributions and transmission modes of maternal microbes into the neonatal microbiota of a passerine, the zebra finch (Taeniopygia guttata), based on fostering experiments. Results Using 16S rRNA amplicon sequencing, we found that zebra finch chicks raised by their biological or foster parents (the society finch Lonchura striata domestica) had gut microbial communities converging with those of the parents that reared them. Moreover, source-tracking models revealed high contribution of zebra finches’ oral cavity/crop microbiota to their chicks’ early gut microbiota, which were largely replaced by the parental gut microbiota at later stages. The results suggest that oral feeding only affects the early stage of hatchling gut microbial development. Conclusions Our study indicates that passerine chicks mainly acquire symbionts through indirect maternal transmission—passive environmental uptake from nests that were smeared with the intestinal and cloacal microbes of parents that raised them. Gut microbial diversity was low in hand-reared chicks, emphasizing the importance of parental care in shaping the gut microbiota. In addition, several probiotics were found in chicks fostered by society finches, which are excellent foster parents for other finches in bird farms and hosts of brood parasitism by zebra finches in aviaries; this finding implies that avian species that can transfer probiotics to chicks may become selectively preferred hosts of brood parasitism in nature.

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3349
Author(s):  
Yile Ge ◽  
Wei Zhu ◽  
Lu Chen ◽  
Diyan Li ◽  
Qingqing Li ◽  
...  

Maternal milk, a main source of nutrition for neonates in early life, has attracted attention. An increasing number of studies have found that maternal milk has a high microbial diversity, as well as factors that might influence this diversity. However, there is a lack of knowledge regarding the effects of host diet and phylogeny on maternal milk microbes and the contribution of the maternal milk microbiota to the neonatal gut microbiota. Here, we analyzed the maternal milk and fecal microbiota of nine species (lion, dog, panda, human, mouse, rhesus macaque, cow, goat, and rabbit) of mammals of three type groups (herbivore, omnivore, and carnivore) using 16S rRNA amplicon sequencing. Our study provided evidence of host diet and phylogeny on the maternal milk microbiota. Moreover, functional prediction revealed that the carnivores had a significantly higher percentage of base excision repair, glycerolipid metabolism, taurine and hypotaurine metabolism, inorganic ion transport and metabolism, and nucleotide metabolism; while arginine and proline metabolism showed enrichment in the herbivore group. Source-tracking analysis showed that the contributions of bacteria from maternal milk to the microbiota of neonates of different mammals were different at day 3 after neonatal birth. Overall, our findings provided a theoretical basis for the maternal milk microbiota to affect neonatal fecal microbiota at day 3 after neonatal birth.


2021 ◽  
Vol 9 (6) ◽  
pp. 1237
Author(s):  
Han-Na Kim ◽  
Eun-Jeong Joo ◽  
Chil-Woo Lee ◽  
Kwang-Sung Ahn ◽  
Hyung-Lae Kim ◽  
...  

Patients with COVID-19 have been reported to experience gastrointestinal symptoms as well as respiratory symptoms, but the effects of COVID-19 on the gut microbiota are poorly understood. We explored gut microbiome profiles associated with the respiratory infection of SARS-CoV-2 during the recovery phase in patients with asymptomatic or mild COVID-19. A longitudinal analysis was performed using the same patients to determine whether the gut microbiota changed after recovery from COVID-19. We applied 16S rRNA amplicon sequencing to analyze two paired fecal samples from 12 patients with asymptomatic or mild COVID-19. Fecal samples were selected at two time points: during SARS-CoV-2 infection (infected state) and after negative conversion of the viral RNA (recovered state). We also compared the microbiome data with those from 36 healthy controls. Microbial evenness of the recovered state was significantly increased compared with the infected state. SARS-CoV-2 infection induced the depletion of Bacteroidetes, while an abundance was observed with a tendency to rapidly reverse in the recovered state. The Firmicutes/Bacteroidetes ratio in the infected state was markedly higher than that in the recovered state. Gut dysbiosis was observed after infection even in patients with asymptomatic or mild COVID-19, while the composition of the gut microbiota was recovered after negative conversion of SARS-CoV-2 RNA. Modifying intestinal microbes in response to COVID-19 might be a useful therapeutic alternative.


2019 ◽  
Vol 8 (4) ◽  
pp. 451 ◽  
Author(s):  
Isabel Cornejo-Pareja ◽  
Gracia Martín-Núñez ◽  
M. Roca-Rodríguez ◽  
Fernando Cardona ◽  
Leticia Coin-Aragüez ◽  
...  

Changes in the intestinal microbial community and some metabolic disturbances, including obesity and type2 diabetes, are related. Glucagon-like peptide-1 (GLP-1) regulates glucose homeostasis. Microbiota have been linked to incretin secretion. Antibiotic use causes changes in microbial diversity and composition. Our aim was to evaluate the relationship between microbiota changes and GLP-1 secretion. A prospective case-control study with a Helicobacter pylori-positive patient model involving subjects under eradication therapy (omeprazole, clarithromycin, and amoxicillin). Forty patients with H. pylori infection and 20 matched participants, but negative for H. pylori antigen. Patients were evaluated before and two months after treatment. We analyzed anthropometric measurements, carbohydrate metabolism, lipid profile, and C-reactive protein. Gut microbiota composition was analyzed through 16S rRNA amplicon sequencing (IlluminaMiSeq). Eradication treatment for H. pylori decreased bacterial richness (Chao1, p = 0.041). Changes in gut microbiota profiles were observed at phylum, family, genus and species levels. GLP-1 secretion and variables of carbohydrate metabolism were improved. Correlations were seen between GLP-1 changes and variations within microbial community abundances, specifically Bifidobacterium adolescentis, the Lachnobacterium genus, and Coriobacteriaceae family. A conventional treatment to eradicate H. pylori could improve carbohydrate metabolism possibly in relation with an increase in GLP-1 secretion. GLP-1 secretion may be related to alterations in intestinal microbiota, specifically Lachnobacterium, B. adolescentis and Coriobacteriaceae.


2021 ◽  
Vol 70 (2) ◽  
pp. 235-243
Author(s):  
TONG TONG ◽  
XIAOHUI NIU ◽  
QIAN LI ◽  
YUXI LING ◽  
ZUMING LI ◽  
...  

Lactobacillus plantarum BW2013 was isolated from the fermented Chinese cabbage. This study aimed to test the effect of this strain on the gut microbiota in BALB/c mice by 16S rRNA amplicon sequencing. The mice were randomly allocated to the control group and three treatment groups of L. plantarum BW2013 (a low-dose group of 108 CFU/ml, a medium-dose group of 109 CFU/ml, and a high-dose group of 1010 CFU/ml). The weight of mice was recorded once a week, and the fecal samples were collected for 16S rRNA amplicon sequencing after 28 days of continuous treatment. Compared with the control group, the body weight gain in the treatment groups was not significant. The 16S rRNA amplicon sequencing analysis showed that both the Chao1 and ACE indexes increased slightly in the medium-dose group compared to the control group, but the difference was not significant. Based on PCoA results, there was no significant difference in β diversity between the treatment groups. Compared to the control group, the abundance of Bacteroidetes increased in the low-dose group. The abundance of Firmicutes increased in the medium-dose group. At the genus level, the abundance of Alloprevotella increased in the low-dose group compared to the control group. The increased abundance of Ruminococcaceae and decreased abundance of Candidatus_Saccharimonas was observed in the medium-dose group. Additionally, the abundance of Bacteroides increased, and Alistipes and Candidatus_Saccharimonas decreased in the high-dose group. These results indicated that L. plantarum BW2013 could ameliorate gut microbiota composition, but its effects vary with the dose.


mSystems ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Kai Shan ◽  
Hongyan Qu ◽  
Keru Zhou ◽  
Liangfang Wang ◽  
Congmin Zhu ◽  
...  

ABSTRACT Gut microbiota play important roles in host metabolism, especially in diabetes. However, why different diets lead to similar diabetic states despite being associated with different microbiota is not clear. Mice were fed two high-energy diets (HED) with the same energy density but different fat-to-sugar ratios to determine the associations between the microbiota and early-stage metabolic syndrome. The two diets resulted in different microbiota but similar diabetic states. Interestingly, the microbial gene profiles were not significantly different, and many common metabolites were identified, including l-aspartic acid, cholestan-3-ol (5β, 3α), and campesterol, which have been associated with lipogenesis and inflammation. Our study suggests that different metabolic-syndrome-inducing diets may result in different microbiota but similar microbiomes and metabolomes. This suggests that the metagenome and metabolome are crucial for the prognosis and pathogenesis of obesity and metabolic syndrome. IMPORTANCE Various types of diet can lead to type 2 diabetes. The gut microbiota in type 2 diabetic patients are also different. So, two questions arise: whether there are any commonalities between gut microbiota induced by different pro-obese diets and whether these commonalities lead to disease. Here we found that high-energy diets with two different fat-to-sugar ratios can both cause obesity and prediabetes but enrich different gut microbiota. Still, these different gut microbiota have similar genetic and metabolite compositions. The microbial metabolites in common between the diets modulate lipid accumulation and macrophage inflammation in vivo and in vitro. This work suggests that studies that only use 16S rRNA amplicon sequencing to determine how the microbes respond to diet and associate with diabetic state are missing vital information.


Metabolites ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 226 ◽  
Author(s):  
Seung-Ho Seo ◽  
Tatsuya Unno ◽  
Seong-Eun Park ◽  
Eun-Ju Kim ◽  
Yu-Mi Lee ◽  
...  

The objective of this study was to examine the anti-colitis activity of Jakyakgamcho-tang (JGT) in dextran sulfate sodium (DSS)-induced colitis and explore changes of the gut microbial community using 16S rRNA amplicon sequencing and metabolomics approaches. It was found that treatment with JGT or 5-aminosalicylic acid (5-ASA) alleviated the severity of colitis symptoms by suppressing inflammatory cytokine levels of IL-6, IL-12, and IFN-γ. The non-metric multidimensional scaling analysis of gut microbiome revealed that JGT groups were clearly separated from the DSS group, suggesting that JGT administration altered gut microbiota. The operational taxonomic units (OTUs) that were decreased by DSS but increased by JGT include Akkermansia and Allobaculum. On the other hand, OTUs that were increased by DSS but decreased by 5-ASA or JGT treatments include Bacteroidales S24-7, Ruminococcaceae, and Rikenellaceae, and the genera Bacteroides, Parabacteroides, Oscillospira, and Coprobacillus. After JGT administration, the metabolites, including most amino acids and lactic acid that were altered by colitis induction, became similar to those of the control group. This study demonstrates that JGT might have potential to effectively treat colitis by restoring dysbiosis of gut microbiota and host metabolites.


Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 241 ◽  
Author(s):  
Nesreen Aljahdali ◽  
Pascale Gadonna-Widehem ◽  
Pauline M. Anton ◽  
Franck Carbonero

Melanoidins are the final Maillard reaction products (protein–carbohydrate complexes) produced in food by prolonged and intense heating. We assessed the impact of the consumption of melanoidins from barley malts on gut microbiota. Seventy-five mice were assigned into five groups, where the control group consumed a non-melanoidin malt diet, and other groups received melanoidin-rich malts in increments of 25% up to 100% melanoidin malts. Feces were sampled at days 0, 1, 2, 3, 7, 14, and 21 and the microbiota was determined using V4 bacterial 16S rRNA amplicon sequencing and short-chain fatty acids (SCFA) by gas chromatography. Increased melanoidins was found to result in significantly divergent gut microbiota profiles and supported sustained SCFA production. The relative abundance of Dorea, Oscillibacter, and Alisitpes were decreased, while Lactobacillus, Parasutterella, Akkermansia, Bifidobacterium, and Barnesiella increased. Bifidobacterium spp. and Akkermansia spp. were significantly increased in mice consuming the highest melanoidin amounts, suggesting remarkable prebiotic potential.


Author(s):  
Sabuktagin Rahman ◽  
Guus A. M. Kortman ◽  
Jos Boekhorst ◽  
Patricia Lee ◽  
Moududur R. Khan ◽  
...  

Abstract Purpose Adverse effects of iron fortification/supplements such as Micronutrient Powder (MNP) on gut microbiota have previously been found in infection-prone African settings. This study examined the adversaries of a low-iron MNP compared with the standard MNP on the composition of gut microbiota in Bangladeshi children exposed to a high concentration of iron from potable groundwater. Methods A randomized controlled trial was conducted in 2- to 5-year-old children, drinking groundwater with a high concentration of iron (≥ 2 mg/L). Children were randomized to receive one sachet per day of either standard MNP (12.5 mg iron) or low-iron MNP (5 mg iron), for 2 months. A sub-sample of 53 children was considered for paired assessment of the gut microbiome by 16S rRNA amplicon sequencing. Results At baseline, the gut microbiota consisted of Bifidobacteriaceae (15.6%), Prevotellaceae (12.2%), Lactobacillaceae (3.6%), Clostridiaceae (4.1%) and Enterobacteriaceae (2.8%). Overall, there was no significant treatment effect of the low-iron MNP compared to the standard MNP. However, an apparent treatment effect was observed in children with a relative adult-like microbiota, with a higher relative abundance of potentially pathogenic Enterobacteriaceae after receiving the standard MNP compared to the low-iron MNP. This effect, however, was statistically non-significant (p = 0.07). Conclusion In Bangladeshi children drinking iron-rich groundwater, a low-iron MNP supplementation did not have a significant impact on their gut microbiota profile/composition compared to the standard MNP. The trial registration number is ISRCTN60058115; Date of registration 03/07/2019; retrospectively registered.


2021 ◽  
Author(s):  
Shan Sun ◽  
Xiangzhu Zhu ◽  
Xiang Huang ◽  
Harvey J. Murff ◽  
Reid M. Ness ◽  
...  

AbstractThe gut microbiota plays an important role in human health and disease. Stool, swab and mucosal tissue samples have been used in individual studies to survey the microbial community but the consequences of using these different sample types are not completely understood. We previously reported differences in microbial community composition with 16S rRNA amplicon sequencing between stool, swab and mucosal tissue samples. Here, we extended the previous study to a larger cohort and performed shotgun metagenome sequencing of 1,397 stool, swab and mucosal tissue samples from 240 participants. Consistent with previous results, taxonomic composition of stool and swab samples was distinct, but still more similar to each other than mucosal tissue samples, which had a substantially different community composition, characterized by a high relative abundance of the mucus metabolizers Bacteroides and Subdoligranulum, as well as bacteria with higher tolerance for oxidative stress such as Escherichia. As has been previously reported, functional profiles were more uniform across sample types than taxonomic profiles with differences between stool and swab samples smaller, but mucosal tissue samples remained distinct from the other two types. When the taxonomic and functional profiles of different sample types were used for inference in association with host phenotypes of age, sex, body mass index (BMI), antibiotics or non-steroidal anti-inflammatory drugs (NSAIDs) use, hypothesis testing using either stool or swab gave broadly similar results, but inference performed on mucosal tissue samples gave results that were generally less consistent with either stool or swab. Our study represents an important resource for the experimental design of studies aimed to understand microbiota perturbations specific to defined micro niches within the human intestinal tract.


Author(s):  
Chung-Yuan Hsu ◽  
Ho-Chang Kuo ◽  
YU-JIH Su

Abstract Introduction Psoriatic arthritis (PSA) is a form of immune-mediated inflammatory arthritis. Studying the gut microbiota of PSA patients may offer new insights into the pathophysiology of this inflammatory joint disease. We designed a prospective study to examine gut microbiome from patients with PSA, primarily with enthesitis and dactylitis, and compared the data with undifferentiated arthritis patients (NO PSA), without enthesitis or dactylitis.Methods We enrolled nine PSA patients and 10 NO PSA patients in this study. The fecal samples were investigated by using 16S rRNA amplicon sequencing, followed by bioinformatics and statistical analyses. Results None of the available objective clinical laboratory data could differentiate PSA from the NO PSA subgroup. The microbiota result shows that Family: XIII_AD3011 is significantly higher in NO PSA patients than PSA patients’ stool samples (p=0.039). Megasphaera elsdenii in the PSA was 10000 times higher than in the NO PSA group.Conclusion Our results demonstrated high intra-group homogeneous and high inter-group heterogeneous microbiota. The clinical symptoms of either enthesitis or dactylitis link to the specific microbiota in the current study. In the future, a larger cohort and thorough biochemical study is needed for confirmation.


Sign in / Sign up

Export Citation Format

Share Document