scholarly journals The LaserFIB: new application opportunities combining a high-performance FIB-SEM with femtosecond laser processing in an integrated second chamber

2020 ◽  
Vol 50 (1) ◽  
Author(s):  
Ben Tordoff ◽  
Cheryl Hartfield ◽  
Andrew J. Holwell ◽  
Stephan Hiller ◽  
Marcus Kaestner ◽  
...  

Abstract The development of the femtosecond laser (fs laser) with its ability to provide extremely rapid athermal ablation of materials has initiated a renaissance in materials science. Sample milling rates for the fs laser are orders of magnitude greater than that of traditional focused ion beam (FIB) sources currently used. In combination with minimal surface post-processing requirements, this technology is proving to be a game changer for materials research. The development of a femtosecond laser attached to a focused ion beam scanning electron microscope (LaserFIB) enables numerous new capabilities, including access to deeply buried structures as well as the production of extremely large trenches, cross sections, pillars and TEM H-bars, all while preserving microstructure and avoiding or reducing FIB polishing. Several high impact applications are now possible due to this technology in the fields of crystallography, electronics, mechanical engineering, battery research and materials sample preparation. This review article summarizes the current opportunities for this new technology focusing on the materials science megatrends of engineering materials, energy materials and electronics.

2007 ◽  
Vol 15 (1) ◽  
pp. 18-19
Author(s):  
A. Thesen ◽  
H. Hoffmeister ◽  
M. Schumann ◽  
P. Gnauck

Recent developments in nano- and semiconductor technology have substantially increased the demand for accurate and efficient site specific cross-sectioning of specimens and preparation of TEM samples. Moreover, nano-research is facing new challenges for manipulation, observation, and modification of devices on a submicron scale. At the same time in materials science a new focus on analytical nanoscale investigations—not only of specimen surfaces and cross sections—but on sample volumes is emerging.These demanding requirements can be met if a focused ion beam (FIB) column for nanoscale structuring is combined with a high resolution SEM that is used to monitor the FIB milling and deposition process on a nanometer scale. Such an integrated Cross-Beam® system enables the high resolution observation and direct control of the FIB milling process in real time. Using this concept it is possible to prepare site specific TEM samples and cross sections with nano-scale accuracy. Such a system can be complemented with a gas injection system (GIS), for deposition and enhanced etching of specific materials, as well as, in-situ micro manipulation systems, and analytical detectors such as EDX and EBSP systems.


2000 ◽  
Vol 6 (S2) ◽  
pp. 514-515
Author(s):  
Julie M. Cairney ◽  
Paul R. Munroe

The focused ion beam miller (FIB) has been widely used in the semiconductor industry for many years, but only recently has its potential as a tool for materials science been recognised. The FIB uses a highly energetic beam of gallium ions to sputter material such that it can precisely section, as well as image, areas of interest. The FIB can be used to create crosssections, which can be examined in the FIB or in a scanning electron microscope (SEM). Cross sections can be made from delicate samples or samples in which a specific area needs to be viewed, for example to check the thickness of coatings or for failure analysis.The FIB may also be used to prepare transmission electron microscope (TEM) specimens [1]. Extremely site-specific thin areas may be prepared with high positional accuracy from heterogeneous samples such as composites or layered structures.


2002 ◽  
Vol 719 ◽  
Author(s):  
Myoung-Woon Moon ◽  
Kyang-Ryel Lee ◽  
Jin-Won Chung ◽  
Kyu Hwan Oh

AbstractThe role of imperfections on the initiation and propagation of interface delaminations in compressed thin films has been analyzed using experiments with diamond-like carbon (DLC) films deposited onto glass substrates. The surface topologies and interface separations have been characterized by using the Atomic Force Microscope (AFM) and the Focused Ion Beam (FIB) imaging system. The lengths and amplitudes of numerous imperfections have been measured by AFM and the interface separations characterized on cross sections made with the FIB. Chemical analysis of several sites, performed using Auger Electron Spectroscopy (AES), has revealed the origin of the imperfections. The incidence of buckles has been correlated with the imperfection length.


Author(s):  
Becky Holdford

Abstract On mechanically polished cross-sections, getting a surface adequate for high-resolution imaging is sometimes beyond the analyst’s ability, due to material smearing, chipping, polishing media chemical attack, etc.. A method has been developed to enable the focused ion beam (FIB) to re-face the section block and achieve a surface that can be imaged at high resolution in the scanning electron microscope (SEM).


Author(s):  
Srikanth Perungulam ◽  
Scott Wills ◽  
Greg Mekras

Abstract This paper illustrates a yield enhancement effort on a Digital Signal Processor (DSP) where random columns in the Static Random Access Memory (SRAM) were found to be failing. In this SRAM circuit, sense amps are designed with a two-stage separation and latch sequence. In the failing devices the bit line and bit_bar line were not separated far enough in voltage before latching got triggered. The design team determined that the sense amp was being turned on too quickly. The final conclusion was that a marginal sense amp design, combined with process deviations, would result in this type of failure. The possible process issues were narrowed to variations of via resistances on the bit and bit_bar lines. Scanning Electron Microscope (SEM) inspection of the the Focused Ion Beam (FIB) cross sections followed by Transmission Electron Microscopy (TEM) showed the presence of contaminants at the bottom of the vias causing resistance variations.


Author(s):  
Qi Chen ◽  
W. D. Griffiths

AbstractIn this work, Mo was added into Al melt to reduce the detrimental effect of double-oxide film defect. An air bubble was trapped in a liquid metal (2L99), served as an analogy for double-oxide film defect in aluminum alloy castings. It was found that the addition of Mo significantly accelerated the consumption of the entrapped bubble by 60 pct after holding for 1 hour. 2 sets of testbar molds were then cast, with 2L99 and 2L99+Mo alloy, with a badly designed running system, intended to deliberately introduce double oxide film defects into the liquid metal. Tensile testing showed that, with the addition of Mo, the Weibull modulus of the Ultimate Tensile Strength and pct Elongation was increased by a factor of 2.5 (from 9 to 23) and 2 (from 2.5 to 4.5), respectively. The fracture surface of 2L99+Mo alloy testbars revealed areas of nitrides contained within bi-film defects. Cross-sections through those defects by Focused Ion Beam milling suggested that the surface layer were permeable, which could be as thick as 30 μm, compared to around 500 nm for the typical oxide film thickness. Transmission Electron Microscopy analysis suggested that the nitride-containing layer consisted of nitride particles as well as spinel phase of various form. The hypothesis was raised that the permeability of the nitride layers promote the reaction between the entrapped atmosphere in the defect and the surrounding liquid metal, reducing the defect size and decreasing their impact on mechanical properties.


Microscopy ◽  
2020 ◽  
Author(s):  
Kazuo Yamamoto ◽  
Satoshi Anada ◽  
Takeshi Sato ◽  
Noriyuki Yoshimoto ◽  
Tsukasa Hirayama

Abstract Phase-shifting electron holography (PS-EH) is an interference transmission electron microscopy technique that accurately visualizes potential distributions in functional materials, such as semiconductors. In this paper, we briefly introduce the features of the PS-EH that overcome some of the issues facing the conventional EH based on Fourier transformation. Then, we present a high-precision PS-EH technique with multiple electron biprisms and a sample preparation technique using a cryo-focused-ion-beam, which are important techniques for the accurate phase measurement of semiconductors. We present several applications of PS-EH to demonstrate the potential in organic and inorganic semiconductors and then discuss the differences by comparing them with previous reports on the conventional EH. We show that in situ biasing PS-EH was able to observe not only electric potential distribution but also electric field and charge density at a GaAs p-n junction and clarify how local band structures, depletion layer widths, and space charges changed depending on the biasing conditions. Moreover, the PS-EH clearly visualized the local potential distributions of two-dimensional electron gas (2DEG) layers formed at AlGaN/GaN interfaces with different Al compositions. We also report the results of our PS-EH application for organic electroluminescence (OEL) multilayers and point out the significant potential changes in the layers. The proposed PS-EH enables more precise phase measurement compared to the conventional EH, and our findings introduced in this paper will contribute to the future research and development of high-performance semiconductor materials and devices.


Ceramics ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 568-577 ◽  
Author(s):  
Frigan ◽  
Chevalier ◽  
Zhang ◽  
Spies

The market share of zirconia (ZrO2) dental implants is steadily increasing. This material comprises a polymorphous character with three temperature-dependent crystalline structures, namely monoclinic (m), tetragonal (t) and cubic (c) phases. Special attention is given to the tetragonal phase when maintained in a metastable state at room temperature. Metastable tetragonal grains allow for the beneficial phenomenon of Phase Transformation Toughening (PTT), resulting in a high fracture resistance, but may lead to an undesired surface transformation to the monoclinic phase in a humid environment (low-temperature degradation, LTD, often referred to as ‘ageing’). Today, the clinical safety of zirconia dental implants by means of long-term stability is being addressed by two international ISO standards. These standards impose different experimental setups concerning the dynamic fatigue resistance of the final product (ISO 14801) or the ageing behavior of a standardized sample (ISO 13356) separately. However, when evaluating zirconia dental implants pre-clinically, oral environmental conditions should be simulated to the extent possible by combining a hydrothermal treatment and dynamic fatigue. For failure analysis, phase transformation might be quantified by non-destructive techniques, such as X-Ray Diffraction (XRD) or Raman spectroscopy, whereas Scanning Electron Microscopy (SEM) of cross-sections or Focused Ion Beam (FIB) sections might be used for visualization of the monoclinic layer growth in depth. Finally, a minimum load should be defined for static loading to fracture. The purpose of this communication is to contribute to the current discussion on how to optimize the aforementioned standards in order to guarantee clinical safety for the patients.


2000 ◽  
Vol 8 (2) ◽  
pp. 36-39
Author(s):  
Clive Chandler

Control of layer thickness is critically important in the manufacture of semiconductor devices. Cross-sectioning exposes device structures for direct examination but conventional sample preparation procedures are difficult, time consuming, and grossly destructive. Cross sections created by focused ion beam (FIB) milling are easier, faster, and less destructive but have not offered the clear layer delineation provided by etching in the conventional sample preparation process. A new gas etch capability (Delineation Etch™ from FEI Company) offers results that are equivalent to conventional wet-etch preparations in a fraction of the time from a single, automated system in the fab without destroying the wafer. The new etch process also has application in milling high-aspect-ratio holes to create contacts to buried metal layers, and in deprocessing devices to reveal silicon and polysilicon structures.


2000 ◽  
Vol 6 (S2) ◽  
pp. 524-525 ◽  
Author(s):  
Michael W. Phaneuf ◽  
Jian Li

Focused ion beam (FIB) microscopes, the use of which is well established in the semiconductor industry, are rapidly gaining attention in the field of materials science, both as a tool for producing site specific, parallel sided TEM specimens and as a stand alone specimen preparation and imaging tool.Both FIB secondary ion images (FIB SII) and FIB secondary electron images (FIB SEI) contain novel crystallographic and chemical information. The ability to see “orientation contrast” in FIB SEI and to a lesser extent SII is well known for cubic materials and more recently stress-free FIB sectioning combined with FIB imaging have been shown to reveal evidence of plastic deformation in metallic specimens. Particularly in hexagonal metals, FIB orientation contrast is sometimes reduced or eliminated by the FIB sectioning process. We have successfully employed FIB gas assisted etching during FIB sectioning using XeF2 for zirconium alloys and Cl2 for zinc coatings on steels to retain orientation contrast during subsequent imaging.


Sign in / Sign up

Export Citation Format

Share Document