scholarly journals Uptake and accumulation of di-n-butyl phthalate in six leafy vegetables under hydroponic conditions

Author(s):  
Yong Li ◽  
Huang-qian Yan ◽  
Xiang-yang Yu

Abstract The uptake and accumulation of di-n-butyl phthalate (DBP) in six leafy vegetables was investigated under hydroponic conditions. The test vegetables were six varieties of Brassica campestris ssp., including Kangresijiqing (KRSJQ), Xiadiqing (XDQ), Ziyoucai (ZYC), Aijiaohuang (AJH), Shanghaiqing (SHQ) and Gaogengbai (GGB). The root concentration factor (RCF), translocation factor (TF) and transpiration stream concentration factor (TSCF) were calculated in order to compare the difference of uptake and accumulation behaviours of DBP in vegetable varieties. The results showed that DBP was easily concentrated in vegetable roots, but was poorly translocated from the roots to the shoots. Among the six vegetables, the ability of concentrating DBP from the solution to shoots was the highest in GGB, followed by ZYC, KRSJQ, AJH, SHQ and XDQ. High concentrations of DBP (5.0 mg/L) seem to inhibit normal physiological activity in the vegetables, which resulted in a higher RCF and a lower TF and TSCF than in low-concentration treatment. The results will help to evaluate the safety of agricultural products and to provide evidence for screening DBP pollution-safe vegetable cultivars. Graphical abstract

2021 ◽  
Author(s):  
juyeon Lee ◽  
minjune Yang

<p>This study conducted a rhizofiltration experiment for uranium-removal with the edible plants (<em>Lactuca sativa, Brassica campestris </em>L., <em>Raphanus sativus </em>L., and <em>Oenanthe javanica</em>) which generally consumed in South Korea. Various batch experiments were performed with different initial uranium concentrations, pH conditions, and genuine groundwater. The results showed the uranium accumulation and bioconcentration factor (BCF) of plant roots increase with an increase in initial uranium concentrations in the solution. Of the four plants, the amount of uranium accumulated in <em>Raphanus sativus </em>L. roots was 1215.8 μg/g DW with the maximum BCF value of 2692.7. The BCF value based on various pH conditions (pHs 3, 5, 7 and 9) of artificial solutions was highest at pH 3 for all four plants, and the BCF value of <em>Brassica campestris </em>L. was the maximum of 11580.3 at pH 3. As a result of rhizofiltration experiments with genuine groundwater contaminated with uranium, the BCF values of <em>Raphanus sativus </em>L. were 1684.7 and 1700.1, the highest among the four species, in Oesam-dong and Bugokdong groundwater samples with uranium concentration of 83 and 173 μg/L. From SEM/EDS analysis, it was confirmed that uranium in contaminated groundwater was adsorbed as a solid phase on the root surface. These results demonstrate that <em>Raphanus sativus </em>L. not only has a high tolerance to high concentrations of uranium and low pH conditions but also has a remarkable potential for uranium accumulation capacity.</p>


1984 ◽  
Vol 49 (5) ◽  
pp. 1061-1078 ◽  
Author(s):  
Jiří Čeleda ◽  
Stanislav Škramovský

Based on the earlier paper introducing a concept of the apparent parachor of a solute in the solution, we have eliminated in the present work algebraically the effect which is introduced into this quantity by the additivity of the apparent molal volumes. The difference remaining from the apparent parachor after substracting the contribution corresponding to the apparent volume ( for which the present authors suggest the name metachor) was evaluated from the experimental values of the surface tension of aqueous solutions for a set of 1,1-, 1,2- and 2,1-valent electrolytes. This difference showed to be independent of concentration up to the very high values of the order of units mol dm-3 but it was directly proportional to the number of the free charges (with a proportionality factor 5 ± 1 cm3 mol-1 identical for all studied electrolytes). The metachor can be, for this reason, a suitable characteristic for detection of the association of ions and formation of complexes in the solutions of electrolytes, up to high concentrations where other methods are failing.


Thorax ◽  
2001 ◽  
Vol 56 (6) ◽  
pp. 468-471
Author(s):  
G B Marks ◽  
J R Colquhoun ◽  
S T Girgis ◽  
M Hjelmroos Koski ◽  
A B A Treloar ◽  
...  

BACKGROUNDA study was undertaken to assess the importance of thunderstorms as a cause of epidemics of asthma exacerbations and to investigate the underlying mechanism.METHODSA case control study was performed in six towns in south eastern Australia. Epidemic case days (n = 48) and a random sample of control days (n = 191) were identified by reference to the difference between the observed and expected number of emergency department attendances for asthma. The occurrence of thunderstorms, their associated outflows and cold fronts were ascertained, blind to case status, for each of these days. In addition, the relation of hourly pollen counts to automatic weather station data was examined in detail for the period around one severe epidemic of asthma exacerbations. The main outcome measure was the number of epidemics of asthma exacerbations.RESULTSThunderstorm outflows were detected on 33% of epidemic days and only 3% of control days (odds ratio 15.0, 95% confidence interval 6.0 to 37.6). The association was strongest in late spring and summer. Detailed examination of one severe epidemic showed that its onset coincided with the arrival of the thunderstorm outflow and a 4–12 fold increase in the ambient concentration of grass pollen grains.CONCLUSIONSThese findings are consistent with the hypothesis that some epidemics of exacerbations of asthma are caused by high concentrations of allergenic particles produced by an outflow of colder air, associated with the downdraught from a thunderstorm, sweeping up pollen grains and particles and then concentrating them in a shallow band of air at ground level. This is a common cause of exacerbations of asthma during the pollen season.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1031 ◽  
Author(s):  
Stefan Kalev ◽  
Gurpal S. Toor

Urban landscapes are significant contributors of organic carbon (OC) in receiving waters, where elevated levels of OC limit the light availability, increase the transport of pollutants, and result in high costs of potable water treatment. Our objective in this study was to investigate the concentrations, fractions (dissolved and particulate), and loads of OC in a residential catchment (3.89 ha drainage area) located in Florida, United States. The outlet of the stormwater pipe draining the residential catchment was instrumented with an automated sampler, a flowmeter, and a rain gauge. The rainfall and runoff samples collected over 25 storm events during the 2016 wet season (June to September) were analyzed for dissolved organic carbon (DOC) and total organic carbon (TOC), with particulate OC (POC) calculated as the difference between TOC and DOC. Mean concentration of DOC was 2.3 ± 1.7 mg L−1 and POC was 0.3 ± 0.3 mg L−1 in the rainfall, whereas DOC was 10.5 ± 6.20 mg L−1 and POC was 2.00 ± 4.05 mg L−1 in the stormwater runoff. Concentrations of DOC were higher during the rising limb of the hydrograph in 15 out of 25 storm events, suggesting flushing of DOC, with an increase in the amount of runoff, from the landscape sources in the residential catchment. The estimated total export of OC during the 2016 wet season was 66.0 kg ha−1, of which DOC was 56.9 kg ha−1 (86.2% of TOC), and POC was 9.1 kg ha−1 (13.8% of TOC). High concentrations and loads of OC, especially DOC, in the stormwater runoff imply that residential catchments in urban watersheds are hot-spots of DOC influx to water bodies. Reducing DOC transport in the urban landscapes is complex and require identifying the origin of DOC and then using site-specific targeted approaches to mitigate DOC loss.


2020 ◽  
Vol 17 (4) ◽  
pp. 314
Author(s):  
Ling Li ◽  
Lu Liao ◽  
Yuhong Fan ◽  
Han Tu ◽  
Shui Zhang ◽  
...  

Environmental contextPhytoremediation requires an understanding of bioconcentration and translocation processes that determine behaviour and fate of potentially toxic elements. We studied the distribution of antimony and arsenic in terrestrial and aquatic soil-plant systems in an antimony ore zone. We found that the common climbing plant Kudzu (Pueraria lobata) is suitable for phyto-stabilisation of antimony-bearing tailings, while tiger grass (Thysanolaena maxima) was able to extract antimony and arsenic from contaminated soils. AbstractAntimony (Sb) pollution is a major environmental issue in China. Many historical abandoned tailings have released high concentrations of Sb and its associated element arsenic (As) to surrounding environments. This has prompted the need to understand accumulation and translocation processes that determine the behaviour and fate of Sb and As in contaminated soil–plant systems and to identify suitable plant species for phytoremediation. Here we investigate distribution of Sb and As in terrestrial and aquatic dominant plant species and associated soils, all of which are naturally found in an Sb ore concentration area in south-west China. Total Sb and As concentrations were measured by inductively coupled plasma mass spectrometry (ICP-MS). The percentage of soluble Sb and As in the total concentrations were determined; the results showed that the basic soil environment facilitates the release of Sb and As from contaminated soils, and that Sb has higher mobility than As. Bioconcentration factor (BCF) and translocation factor (TF) were used for evaluating the ability of plants to accumulate and transport Sb and As, respectively. The results indicated that all selected plant species have the potential to tolerate high concentrations of Sb and As. Consequently, this study suggested that Pueraria lobata (PL) can be used as the preferred species for phytostabilisation of abandoned Sb-bearing tailings, given that PL has well-developed roots and lush leaf tissues and the ability to translocate Sb from roots to aboveground parts. Thysanolaena maxima (TM) is suitable for phyto-extraction of Sb and As in contaminated soils.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Masoud Akbari ◽  
Emrullah Sogutdelen ◽  
Smriti Juriasingani ◽  
Alp Sener

Hydrogen sulfide (H2S) is the latest member of the gasotransmitter family and known to play essential roles in cancer pathophysiology. H2S is produced endogenously and can be administered exogenously. Recent studies showed that H2S in cancers has both pro- and antitumor roles. Understanding the difference in the expression and localization of tissue-specific H2S-producing enzymes in healthy and cancer tissues allows us to develop tools for cancer diagnosis and treatment. Urological malignancies are some of the most common cancers in both men and women, and their early detection is vital since advanced cancers are recurrent, metastatic, and often resistant to treatment. This review summarizes the roles of H2S in cancer and looks at current studies investigating H2S activity and expression of H2S-producing enzymes in urinary cancers. We specifically focused on urothelial carcinoma, renal cell carcinoma, and prostate cancer, as they form the majority of newly diagnosed urinary cancers. Recent studies show that besides the physiological activity of H2S in cancer cells, there are patterns between the development and prognosis of urinary cancers and the expression of H2S-producing enzymes and indirectly the H2S levels. Though controversial and not completely understood, studying the expression of H2S-producing enzymes in cancer tissue may represent an avenue for novel diagnostic and therapeutic strategies for addressing urological malignancies.


2010 ◽  
Vol 62 (9) ◽  
pp. 2096-2105 ◽  
Author(s):  
H. B. Li ◽  
H. B. Cao ◽  
Y. P. Li ◽  
Y. Zhang ◽  
H. R. Liu

Coking wastewater is one of the most toxic industrial effluents since it contains high concentrations of ammonia and toxic organic compounds. Nitrification might be upset by the inhibitory effect of organic compounds during the biological treatment of the wastewater. In this study, shortcut nitrification was obtained in a sequencing batch bioreactor (SBR) and the inhibitory effect of organic compounds on the nitrification was examined when temperature was 30±1°C, pH was 7.0–8.5, and dissolved oxygen concentration was 2.0–3.0 mg L−1. The inhibitory effect of organic compounds was presumed to be one of the main factors to obtain satisfactory nitrite accumulation. The effect of organic compounds on nitrification was examined in the SBR with initial inhibitor concentrations ranging from 0 to 80 mg L−1, including phenol, pyrocatechol, resorcin, benzene, quinoline, pyridine and indole. The inhibitory effect became stronger with the increase in the concentration, and it was presumed to take place through a direct mechanism resulting from biological toxicity of the inhibitor itself. Furthermore, the inhibitory effect on ammonia oxidation was slighter than that on nitrite oxidation, and the nitrite accumulation ratio during the nitrification was determined by the difference between the reaction rates of above two processes.


2000 ◽  
Vol 35 (6) ◽  
pp. 507-519 ◽  
Author(s):  
T Majima ◽  
Q Liu

Variations in the new strain concentration factor (SNCF) with creep deformation have been studied for notched cylindrical bars. This new SNCF is based on the average axial strain, defined under the triaxial state of stress at the net section. The uniaxial creep constitutive equations employed in the finite element calculations are primary-tertiary, primary-secondary and tertiary creep. With creep deformation the new SNCF increases sharply from its elastic value and reaches a maximum. After that it gradually decreases from the maximum with creep deformation. The new SNCF decreases at any deformation level as the notch radius increases. However, it never becomes less than unity. The notch radius has the strongest effect on the SNCF from infinitesimal to large deformation. The difference in the type of creep constitutive equation has an effect on the SNCF only beyond the deformation level at the maximum SNCF. Creep deformation provides the pattern of the variation, i.e. an increase in the SNCF up to the maximum and subsequent gradual decrease. The conventional SNCF becomes less than unity after increasing from its elastic value to a maximum and then decreasing. The fact that the conventional SNCF is less than unity is contradictory to the concave distributions that the axial strain has on the net section at any deformation level. The new SNCF provides reasonable values, which are consistent with the concave distributions.


Sign in / Sign up

Export Citation Format

Share Document