Studies of pemetrexed and gemcitabine, alone and in combinations, in human lung cancer models

2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 17114-17114 ◽  
Author(s):  
D. C. Chan ◽  
V. J. Chen ◽  
Z. Zhang ◽  
B. Helfrich ◽  
F. R. Hirsch ◽  
...  

17114 Background: Gemcitabine (GEM) is a deoxycytidine analog that inhibits DNA synthesis. Pemetrexed (ALIMTA, PEM) is a novel antifolate inhibiting multiple enzymes targets, including thymidylate synthase (TS). This study aimed at evaluating the antitumor effects of these antimetabolites against NSCLC and SCLC tumor models. Methods: In vitro growth inhibition (IC50) studies were done by 6-days MTT assays against a panel of 20 NSCLC and 17 SCLC cell lines. In vivo studies used only NSCLC H2122 tumor line, implanted either subcutaneously in athymic nude mice or orthotopically in athymic nude rats. Drugs were given via the ip route at the designated schedules. Results: Against NSCLC and SCLC cell lines, the averaged IC50s of GEM were 0.015 ± 0.008 μM and 0.055 ± 0.04 μM respectively. The corresponding averaged IC50s for PEM were 0.65 ± 0.2 μM and 0.091±0.018 μM respectively. When H2122 tumors reached 50–100mg, mice were treated with 10 daily doses of PEM at 100, 200 and 300 mg/kg, or three doses of GEM every 4 days at 30, 60 and 120 mg/kg. PEM delayed tumor growth by 12 to 18 days, and GEM delayed by 10 to 14 days, relative to vehicle control. Results of three combination regimens with GEM (30 mg/kg) and PEM (100 mg/kg) were: (1) GEM → PEM gave intermediate activities between the two single agents, but was toxic to animals; (2) PEM and GEM given concurrently were more active than single agents alone and delayed tumor growth by 12 days with some toxic side effects; (3) PEM → GEM was better than the single agents alone, and delayed tumor growth by ∼14 days without toxicity. Athymic nude rats bearing orthotopic H2122 tumors given PEM daily at 50, 100 and 200 mg/kg for 21 days had significantly prolonged survival, but not in a dose-dependent manner. PEM at 50 mg/kg was more effective than doses at 100 or 200 mg/kg. GEM was toxic to nude rats due to poor plasma deamination of GEM. Conclusions: In vitro, PEM was more potent against SCLC than NSCLC cell lines, but GEM had similar activities against all lung lines tested. Studies of H2122 xenografts in rodent supported PEM → GEM as the preferred sequence for the combined administration of these two drugs. [Table: see text]

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9909
Author(s):  
Carol Haddoub ◽  
Mohamad Rima ◽  
Sandrine Heurtebise ◽  
Myriam Lawand ◽  
Dania Jundi ◽  
...  

Background Montivipera bornmuelleri’s venom has shown immunomodulation of cytokines release in mice and selective cytotoxicity on cancer cells in a dose-dependent manner, highlighting an anticancer potential. Here, we extend these findings by elucidating the sensitivity of murine B16 skin melanoma and 3-MCA-induced murine fibrosarcoma cell lines to M. bornmuelleri’s venom and its effect on tumor growth in vivo. Methods The toxicity of the venom on B16 and MCA cells was assessed using flow cytometry and xCELLigence assays. For in vivo testing, tumor growth was followed in mice after intratumoral venom injection. Results The venom toxicity showed a dose-dependent cell death on both B16 and MCA cells. Interestingly, overexpression of ovalbumin increased the sensitivity of the cells to the venom. However, the venom was not able to eradicate induced-tumor growth when injected at 100 µg/kg. Our study demonstrates a cytotoxic effect of M. bornmuelleri’s venom in vitro which, however, does not translate to an anticancer action in vivo.


2015 ◽  
Vol 33 (7_suppl) ◽  
pp. 205-205
Author(s):  
Thomas Nelius ◽  
Courtney Jarvis ◽  
Dalia Martinez-Marin ◽  
Stephanie Filleur

205 Background: Docetaxel/DTX and cabazitaxel/CBZ have shown promise in the treatment of metastatic Castration-Refractory Prostate Cancer/mCPRC however, comparative studies are missing. Toxicities of these drugs are significant, urging the need to modify taxane regimens. Recently, low-dose metronomic/LDM treatments using conventional chemotherapeutic drugs have shown benefits in CPRC in improving the effect of anti-angiogenic agents. Previously, we have demonstrated that LDM-DTX in combination with PEDF curbs significantly CRPC growth, limits metastases formation and prolongs survival in vivo. In this study, we intended to compare the cytotoxic effect of CBZ and DTX on CRPC cells in vitro and CL1 tumors in vivo. Methods: PC3, DU145 cell lines were from ATCC.CL1 cells were obtained from androgen-deprived LNCaP cells. Cell proliferation was assessed by crystal violet staining and cell cycle analyses. In vitro cytotoxicity assays were performed on CL1 cells/RAW264.7 macrophages co-cultures treated with PEDF and increasing doses of taxanes. For the in vivo studies, CL1 cells were engineered to stably express the DsRed Express protein +/- PEDF. PEDF anti-tumor effects were assessed on s.c. xenografts treated with DTX (5mg/kg ip ev. 4 day) as reference, CBZ (5mg/kg ip ev. 4 days, 1mg/kg for 10 days, 0.5mg/kg q.a.d. and 0.1mg/kg daily) or placebo. Results: CBZ limits cell proliferation with a greater efficacy than DTX in all CRPC cell lines tested. DU145 presented the largest difference. High doses of taxane blocked tumor cells in mitosis, whereas LDM increased the SubG1 population. This effect was significantly higher in DU145 cells treated with CBZ. In vivo, 5mg/kg CBZ delayed tumor growth more efficiently than 5mg/kg DTX. PEDF/5mg/kg CBZ markedly delayed tumor growth compared to all treatments. Finally, engulfment of tumor cells by macrophages was higher in combined treatments suggesting an inflammation-related process. Conclusions: CBZ is more efficient than DTX both in vitro and in vivo.The data also reinforce PEDF as a promising anti-neoplasic agent in combination with LDM taxane chemotherapies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xing Liu ◽  
Pingsheng Zhou ◽  
Keqing He ◽  
Zhili Wen ◽  
Yong Gao

Background: The etiology and carcinogenesis of hepatocellular carcinoma (HCC) are associated with various risk factors. Saponins extracted from Dioscorea zingiberensis C. H. Wright exhibit antitumor activity against HCC. This study aimed to investigate the effect and the underlying mechanism of Dioscorea Zingiberensis new saponin (ZnS) on HCC.Methods: Human HCC cell lines, Huh7 and SMMC-7721, were treated with different concentrations of ZnS. Cell apoptosis was determined via flow cytometry assay. Differentially expressed lncRNAs (DElncRNAs) in ZnS-treated SMMC-7721 cells were determined through RNA-sequence. The role of lncRNA TCONS-00026762 in HCC was investigated gain of function analysis, along with cell proliferation, apoptosis, and invasion in HCC cells. A subcutaneous xenograft of SMMC-7721 cell lines was established to study the effects of TCONS-00026762 in vivo. The expression of apoptosis-related proteins was detected in vivo and in vitro via western blotting.Results: ZnS inhibited the proliferation of HCC cell in a dose-dependent manner. ZnS could induce apoptosis in HCC cells. Illumina sequencing results showed that 493 DElncRNAs were identified in ZnS-treated SMMC-7721 cells. TCONS-00026762 expression was down-regulated in the ZnS-treated SMMC-7721 cells. TCONS-00026762 inhibited the effect of ZnS on the proliferation, apoptosis, and invasion of HCC cells. ZnS inhibited the tumor growth, while, TCONS-00026762 promoted tumor growth in vivo. Furthermore, ZnS and TCONS-00026762 regulated cell apoptotic pathways.Conclusion: ZnS significantly inhibits the viability, apoptosis, invasion, and tumorigenicity of HCC cells by regulating the expression of TCONS-00026,762. Our findings provide novel insights into the potential role of lncRNA in HCC therapy.


Author(s):  
Meili Gao ◽  
Chun Deng ◽  
Fan Dang

Although sorafenib (Sor) is the only effective drug for hepatocellular carcinoma (HCC), its therapeutic potential to date is mainly limited to the low tumor response. This study was designed to explore whether resveratrol (Res) could potentiate the anticancerous activity of Sor. We used HepG2 and Huh7 HCC cell lines and BALB/c nude mice for in vitro and in vivo studies, respectively. The cultured cell lines and tumor induction in the mice were treated with different concentrations of Res and Sor alone, and the combination of Res and Sor to observe the antitumor effects. Significant inhibitory effects were observed in the combined treatment of Res and Sor compared to Res and Sor alone treatments both in vitro and in vivo as demonstrated by significantly high number of S phase cells and apoptotic cells. Moreover, these findings were accompanied by the reduction of CDK2, CDC25A, PKA, p-AMPK, and eEF2K protein levels and the increment of cyclin A, cleavage caspase-3, caspase-8, and caspase-9 protein levels. The combinational treatment exhibited more significant anticancerous effect than the Res and Sor alone treatments in mice-bearing HepG2 xenograft. Overall, our results suggest that PKA/AMPK/eEF2K pathway is involved in the synergistic anticancerous activity of Res and Sor combination treatment in HCC cells. Thus, Res and Sor combination therapy may be promising in increasing the tumor response of Sor in the future.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii66-ii66
Author(s):  
Kihwan Hwang ◽  
Kyeong-O Go ◽  
Sang Ho Kim ◽  
Hyunwoo Lee ◽  
Jung Ho Han ◽  
...  

Abstract Poly (ADP-ribose) polymerase (PARP) inhibition could enhance the efficacy of temozolomide and prolong survival in patients with glioblastoma. The aim of this study was to evaluate the combination of the PARP inhibitor olaparib with temozolomide in the treatment of glioblastoma by evaluating in vitro and in vivo antitumor effects in an experimental glioblastoma model. The authors investigated antitumor effects of olaparib on temozolomide-induced cytotoxicity on O6-methylguanine methyltransferase (MGMT) promotor methylated (U87MG, U251MG) and MGMT promotor unmethylated (T98G) glioblastoma cell lines using in vitro cell viability and apoptosis assay. We found that the combination of olaparib with temozolomide enhanced temozolomide-induced cytotoxicity in all glioblastoma cell lines regardless of the status of MGMT promotor methylation. For in vivo studies, nude mice bearing orthotopically xenografted glioblastoma cell lines (U87MG) were randomized to four experimental groups: (i) untreated, (ii) temozolomide alone, (iii) olaprib alone and, (iv) olaparib+temozolomide. Mice were treated daily for 4 weeks and monitored for tumor growth, and survival. However, the addition of olaparib had no impact on the efficacy of temozolomide. The combination of PARP inhibitor olaparib with temozolomide could be an effective therapeutic approach for treatment of glioblastoma regardless of MGMT promotor methylation status, although the efficacy still should be evaluated by in vivo and clinical studies.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1960 ◽  
Author(s):  
Erkang Zhang ◽  
Yani Zhang ◽  
Zhuoyan Fan ◽  
Lei Cheng ◽  
Shiwen Han ◽  
...  

Apigenin is a natural flavone with anti-inflammatory and antioxidant properties and antitumor abilities against several types of cancers. Previous studies have found that the antitumor effects of apigenin may be due to its similar chemical structure to 17β-estradiol (E2), a main kind of estrogen in women. However, the precise mechanism underlying the antitumor effects of apigenin in cervical cancer remains unknown. On the other hand, there is increasing evidence that describes a histamine role in cancer cell proliferation. In this study, we examined whether apigenin can attenuate the effects of histamine on tumors by regulating the expression level of estrogen receptors (ERs) to inhibit cervical cancer growth. Our in vitro data indicates that apigenin inhibited cell proliferation in a dose-dependent manner in human cervical cancer cells (HeLa), while histamine shows the opposite effects. After that, the xenograft model was established to explore the antitumor effects of apigenin in vivo, the results show that apigenin inhibited cervical tumor growth by reversing the abnormal ER signal in tumor tissue which was caused by histamine. We also demonstrate that apigenin inhibited cell proliferation via suppressing the PI3K/Akt/mTOR signaling pathway. Collectively, our results suggest that apigenin may inhibit tumor growth through the ER-mediated PI3K/Akt/mTOR pathway and that it can also attenuate the effects of histamine on tumors.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 551-551 ◽  
Author(s):  
Mariateresa Fulciniti ◽  
Pierfrancesco Tassone ◽  
Teru Hideshima ◽  
Sonia Vallet ◽  
Seth Ettenberg ◽  
...  

Abstract Decreased activity of osteoblasts (OB) contributes to osteolytic lesions in multiple myeloma (MM). Dickkopf-1 (DKK1) is a soluble Wnt inhibitor produced by MM cells that inhibits osteoblastogenesis in the bone marrow (BM) microenvironment. DKK1, also present in MM patient plasma, has been shown to inhibit the differentiation of osteoblast precursor cells in vitro, and its plasma level correlates with focal bone lesions in MM. Therefore, we have evaluated DKK1 as a target in MM in the context of the BM microenvironment. We first analyzed the effects of a DKK1 neutralizing antibody (BHQ880) on OB differentiation. Anti-DKK1 Ab was able to increase differentiation of mesenchymal stem cells (MSCs) to OB and reduce IL-6 levels following MSC differentiation to OB. While OB activity in MSCs cultured with osteoblast differentiation media was reduced in the presence of INA-6 MM cells, treatment with DKK1 neutralizing antibody was able to restore OB activity in a dose-dependent manner, overcoming the negative effect of MM cells. We did not observe a direct effect of this Ab on growth or survival of human MM cell lines. However, when a panel of MM cell lines was cultured with BM stromal cells (BMSC), the Ab induced significant growth inhibitory effects on MM cells, associated with downregulation of IL-6 produced by MSCs. To evaluate the in vivo bone and antitumor effects of anti-DKK1 Ab treatment on MM cells in the human microenvironment, we used a SCID-hu murine model, using INA-6 MM cells. In this model we observed a direct correlation between the level of soluble human DKK1 in murine blood and the tumor growth. Following treatment with BHQ880, by bone histology analysis, we observed increased trabecular bone and numbers of OBs in the retrieved bone chip from BHQ880 treated mice compared to control mice, one month after initial dose. We also found an increase in human osteocalcin in the serum of BHQ880-treated mice compared to the controls, suggesting an increase in OB activity. Interestingly, we observed suppression of myeloma growth, measured by changes in serum level of soluble huIL6sR, 4 weeks following BHQ880 treatment of the mice. These results support DKK1 as an important therapeutic target in myeloma and provide the rationale for clinical evaluation of this molecule in MM to improve bone disease and to inhibit MM growth.


2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ronggang Luo ◽  
Yi Zhuo ◽  
Quan Du ◽  
Rendong Xiao

Abstract Background To detect and investigate the expression of POU domain class 2 transcription factor 2 (POU2F2) in human lung cancer tissues, its role in lung cancer progression, and the potential mechanisms. Methods Immunohistochemical (IHC) assays were conducted to assess the expression of POU2F2 in human lung cancer tissues. Immunoblot assays were performed to assess the expression levels of POU2F2 in human lung cancer tissues and cell lines. CCK-8, colony formation, and transwell-migration/invasion assays were conducted to detect the effects of POU2F2 and AGO1 on the proliferaion and motility of A549 and H1299 cells in vitro. CHIP and luciferase assays were performed for the mechanism study. A tumor xenotransplantation model was used to detect the effects of POU2F2 on tumor growth in vivo. Results We found POU2F2 was highly expressed in human lung cancer tissues and cell lines, and associated with the lung cancer patients’ prognosis and clinical features. POU2F2 promoted the proliferation, and motility of lung cancer cells via targeting AGO1 in vitro. Additionally, POU2F2 promoted tumor growth of lung cancer cells via AGO1 in vivo. Conclusion We found POU2F2 was highly expressed in lung cancer cells and confirmed the involvement of POU2F2 in lung cancer progression, and thought POU2F2 could act as a potential therapeutic target for lung cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chunyang Li ◽  
Shuangqing Yang ◽  
Huaqing Ma ◽  
Mengjia Ruan ◽  
Luyan Fang ◽  
...  

Abstract Background Cervical cancer is a type of the most common gynecology tumor in women of the whole world. Accumulating data have shown that icariin (ICA), a natural compound, has anti-cancer activity in different cancers, including cervical cancer. The study aimed to reveal the antitumor effects and the possible underlying mechanism of ICA in U14 tumor-bearing mice and SiHa cells. Methods The antitumor effects of ICA were investigated in vivo and in vitro. The expression of TLR4/MyD88/NF-κB and Wnt/β-catenin signaling pathways were evaluated. Results We found that ICA significantly suppressed tumor tissue growth and SiHa cells viability in a dose-dependent manner. Also, ICA enhanced the anti-tumor humoral immunity in vivo. Moreover, ICA significantly improved the composition of the microbiota in mice models. Additionally, the results clarified that ICA significantly inhibited the migration, invasion capacity, and expression levels of TGF-β1, TNF-α, IL-6, IL-17A, IL-10 in SiHa cells. Meanwhile, ICA was revealed to promote the apoptosis of cervical cancer cells by down-regulating Ki67, survivin, Bcl-2, c-Myc, and up-regulating P16, P53, Bax levels in vivo and in vitro. For the part of mechanism exploration, we showed that ICA inhibits the inflammation, proliferation, migration, and invasion, as well as promotes apoptosis and immunity in cervical cancer through impairment of TLR4/MyD88/NF-κB and Wnt/β-catenin pathways. Conclusions Taken together, ICA could be a potential supplementary agent for cervical cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document