scholarly journals Comparative Evaluation of Pellet Cushioning Agents by Various Imaging Techniques and Dissolution Studies

2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Konrád Sántha ◽  
Nikolett Kállai-Szabó ◽  
Viktor Fülöp ◽  
Géza Jakab ◽  
Péter Gordon ◽  
...  

AbstractMost of the commercially available pharmaceutical products for oral administration route are marketed in the tablet dosage forms. However, compression of multiparticulate systems is a challenge for the pharmaceutical research and industry, especially if the individual unit is a coated particle, as the release of the active ingredient depends on the integrity of the coating. In the present study, polymer-coated pellets tableted with different types of excipients (powder, granules, pellets) then were investigated by various tablet-destructive (microscopic) and tablet non-destructive (microfocus X-ray; microCT) imaging methods. The information obtained from the independent evaluation of the in vitro drug release profiles model is confirmed by the results obtained by image analysis, regardless of whether X-ray or stereomicroscopic images of the coated, tableted pellets were used for image analysis. The results of this study show that the novel easy-to-use, fast, and non-destructive MFX method is a good alternative to the already used microscopic image analysis methods regarding the characterization of particulates, compressed into tablets.

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4554
Author(s):  
Ralph-Alexandru Erdelyi ◽  
Virgil-Florin Duma ◽  
Cosmin Sinescu ◽  
George Mihai Dobre ◽  
Adrian Bradu ◽  
...  

The most common imaging technique for dental diagnoses and treatment monitoring is X-ray imaging, which evolved from the first intraoral radiographs to high-quality three-dimensional (3D) Cone Beam Computed Tomography (CBCT). Other imaging techniques have shown potential, such as Optical Coherence Tomography (OCT). We have recently reported on the boundaries of these two types of techniques, regarding. the dental fields where each one is more appropriate or where they should be both used. The aim of the present study is to explore the unique capabilities of the OCT technique to optimize X-ray units imaging (i.e., in terms of image resolution, radiation dose, or contrast). Two types of commercially available and widely used X-ray units are considered. To adjust their parameters, a protocol is developed to employ OCT images of dental conditions that are documented on high (i.e., less than 10 μm) resolution OCT images (both B-scans/cross sections and 3D reconstructions) but are hardly identified on the 200 to 75 μm resolution panoramic or CBCT radiographs. The optimized calibration of the X-ray unit includes choosing appropriate values for the anode voltage and current intensity of the X-ray tube, as well as the patient’s positioning, in order to reach the highest possible X-rays resolution at a radiation dose that is safe for the patient. The optimization protocol is developed in vitro on OCT images of extracted teeth and is further applied in vivo for each type of dental investigation. Optimized radiographic results are compared with un-optimized previously performed radiographs. Also, we show that OCT can permit a rigorous comparison between two (types of) X-ray units. In conclusion, high-quality dental images are possible using low radiation doses if an optimized protocol, developed using OCT, is applied for each type of dental investigation. Also, there are situations when the X-ray technology has drawbacks for dental diagnosis or treatment assessment. In such situations, OCT proves capable to provide qualitative images.


2021 ◽  
Vol 22 (7) ◽  
pp. 3691
Author(s):  
Oliver Schmutzler ◽  
Sebastian Graf ◽  
Nils Behm ◽  
Wael Y. Mansour ◽  
Florian Blumendorf ◽  
...  

Quantitative cellular in vitro nanoparticle uptake measurements are possible with a large number of different techniques, however, all have their respective restrictions. Here, we demonstrate the application of synchrotron-based X-ray fluorescence imaging (XFI) on prostate tumor cells, which have internalized differently functionalized gold nanoparticles. Total nanoparticle uptake on the order of a few hundred picograms could be conveniently observed with microsamples consisting of only a few hundreds of cells. A comparison with mass spectroscopy quantification is provided, experimental results are both supported and sensitivity limits of this XFI approach extrapolated by Monte-Carlo simulations, yielding a minimum detectable nanoparticle mass of just 5 pg. This study demonstrates the high sensitivity level of XFI, allowing non-destructive uptake measurements with very small microsamples within just seconds of irradiation time.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. E173-E188 ◽  
Author(s):  
Sara Johansson ◽  
Matteo Rossi ◽  
Stephen A. Hall ◽  
Charlotte Sparrenbom ◽  
David Hagerberg ◽  
...  

Although many studies have been performed to investigate the spectral induced polarization (SIP) response of nonaqueous phase liquid (NAPL)-contaminated soil samples, there are still many uncertainties in the interpretation of the data. A key issue is that altered pore space geometries due to the presence of a NAPL phase will change the measured IP spectra. However, without any information on the NAPL distribution in the pore space, assumptions are necessary for the SIP data interpretation. Therefore, experimental data of SIP signals directly associated with different NAPL distributions are needed. We used high-resolution X-ray tomography and 3D image processing to quantitatively assess NAPL distributions in samples of fine-grained sand containing different concentrations of tetrachloroethylene and link this to SIP measurements on the same samples. The total concentration of the sample constituents as well as the volumes of the individual NAPL blobs were calculated and used for the interpretation of the associated SIP responses. The X-ray tomography and image analysis showed that the real sample properties (porosity and NAPL distributions) differed from the targeted ones. Both contaminated samples contained less NAPL than expected from the manual sample preparation. The SIP results showed higher real conductivity and lower imaginary conductivity in the contaminated samples compared to a clean sample. This is interpreted as an effect of increased surface conductivity along interconnected NAPL blobs and decreased surface areas in the samples due to NAPL blobs larger than and enclosing grains. We conclude that the combination of SIP, X-ray tomography, and image analysis is a very promising approach to achieve a better understanding of the measured SIP responses of NAPL-contaminated samples.


2020 ◽  
Vol 62 (3) ◽  
pp. 160-162
Author(s):  
J Twydle

Previously, scientific examination of works of art was almost exclusively carried out in a specialist laboratory, major gallery or institution. Moving the artwork nearly always involved associated risks and transportation and insurance costs. Founded in 2009, The True Image Solution (TIS) had a vision to bring non-destructive technology to the artwork and to extend the possible range of evaluation by applying other imaging techniques, including ultrasound, flash thermography, X-ray spectroscopy and microwave imaging. In conjunction with English Heritage, these techniques were applied to a wide variety of objects. The results demonstrated that all of these techniques could be successfully carried out in situ and the risk of transportation damage, as well as associated transport and insurance costs, could be eliminated.


2006 ◽  
Vol 951 ◽  
Author(s):  
Pavan M. V. Raja ◽  
Jennifer Connolley ◽  
Pulickel M. Ajayan ◽  
Omkaram Nalamasu ◽  
Deanna M. Thompson

ABSTRACTThe increasing importance of nanomaterial-related applications has given rise to concerns pertaining to their impact on human health. In vitro mammalian cell-based assays can provide a quick and simple estimate of the possible adverse effects of the nanomaterials. However, recent studies have questioned the efficacy of traditional assays such as the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, in evaluating cell-nanomaterial interactions, implying the need for alternate methods. We applied image analysis to enumerate the DAPI (2-[4-(Aminomethyl) phenyl]-1H-indole-6-carboximidamide, dihydrochloride) – stained cellular nuclei. Image analysis, being non-destructive, capable of automation, and applicable over a wide range of cell seeding densities, offers several advantages compared to older methods like the MTT assay and hemocytometry. Using image analysis, the impact of singlewalled carbon nanotubes (SWNT) on rat aortic smooth muscle cell (SMC) growth kinetics, were examined. Despite the carbon nanomaterial presence, the fluorescent signal from the nuclei was not noticeably impacted over the SWNT range examined (0.00-0.10 mg/ml). We anticipate that this method can also be applied to evaluate the biological impact of other nanomaterials.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3039 ◽  
Author(s):  
Fernanda Bribiesca-Contreras ◽  
William I. Sellers

BackgroundGross dissection is a widespread method for studying animal anatomy, despite being highly destructive and time-consuming. X-ray computed tomography (CT) has been shown to be a non-destructive alternative for studying anatomical structures. However, in the past it has been limited to only being able to visualise mineralised tissues. In recent years, morphologists have started to use traditional X-ray contrast agents to allow the visualisation of soft tissue elements in the CT context. The aim of this project is to assess the ability of contrast-enhanced micro-CT (μCT) to construct a three-dimensional (3D) model of the musculoskeletal system of the bird wing and to quantify muscle geometry and any systematic changes due to shrinkage. We expect that this reconstruction can be used as an anatomical guide to the sparrowhawk wing musculature and form the basis of further biomechanical analysis of flight.MethodsA 3% iodine-buffered formalin solution with a 25-day staining period was used to visualise the wing myology of the sparrowhawk (Accipiter nisus). μCT scans of the wing were taken over the staining period until full penetration of the forelimb musculature by iodine was reached. A 3D model was reconstructed by manually segmenting out the individual elements of the avian wing using 3D visualisation software.ResultsDifferent patterns of contrast were observed over the duration of the staining treatment with the best results occurring after 25 days of staining. Staining made it possible to visualise and identify different elements of the soft tissue of the wing. Finally, a 3D reconstruction of the musculoskeletal system of the sparrowhawk wing is presented and numerical data of muscle geometry is compared to values obtained by dissection.DiscussionContrast-enhanced μCT allows the visualisation and identification of the wing myology of birds, including the smaller muscles in the hand, and provides a non-destructive way for quantifying muscle volume with an accuracy of 96.2%. By combining contrast-enhanced μCT with 3D visualisation techniques, it is possible to study the individual muscles of the forelimb in their original position and 3D design, which can be the basis of further biomechanical analysis. Because the stain can be washed out post analysis, this technique provides a means of obtaining quantitative muscle data from museum specimens non-destructively.


PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0170633 ◽  
Author(s):  
Christian Enders ◽  
Eva-Maria Braig ◽  
Kai Scherer ◽  
Jens U. Werner ◽  
Gerhard K. Lang ◽  
...  

Author(s):  
J. Walter ◽  
W. Mack ◽  
C.Y. Lee ◽  
C. Gspan

Abstract The analysis of thin layers in semiconductor components represents a central point in the quality control of semiconductor companies. Not only to control production processes, but to successfully operate also reverse engineering, reliable thin-film measurement methods are essential. In this work, non-destructive thin film EDX (energy dispersive X-ray micro analysis) software and μXRF (micro x-ray fluorescence analysis) were compared with TEM analysis. These methods ensure a high lateral resolution which is essential in the analysis of semiconductor structures. As an example, four different, for the semiconductor industry interesting, very thin coating systems in the nanometer range have been tested. In the individual cases best TEM detector contrast settings could be found, as well as optimum fluorescence lines settings on the EDX to minimize the errors. The TEM measurements, in thickness and composition, were compared to the thin film EDX software and the μXRF method results to determine their accuracy. It turns out that depending on the layer system recalibration with multilayer standards or at least with elemental standards is recommended. It could be shown that with μXRF and thin film EDX a reliable, rapid and non-destructive layer analysis is possible.


2016 ◽  
Vol 301 ◽  
pp. 228-233 ◽  
Author(s):  
Zsombor Csobán ◽  
Barnabás Kállai-Szabó ◽  
Nikolett Kállai-Szabó ◽  
Tamara Takács ◽  
Tamás Hurtony ◽  
...  

2012 ◽  
Vol 1374 ◽  
pp. 17-25
Author(s):  
Jocelyn Alcántara García ◽  
José Luis Ruvalcaba Sil ◽  
Marie Van der Meeren

ABSTRACTThe necessity of studying cultural heritage through non-invasive and non-destructive techniques has led to significant advances in the last decade. One of the most recent advancements in this theme in Mexico is the portable X-ray system SANDRA, which was used to study three manuscripts directly related to the history of “San Nicolás Coatepec”, Mexico. X-ray fluorescence was chosen as the suitable technique because it can provide a fast qualitative and quantitative multielemental high sensitivity analysis. The documents were examined globally, using imaging techniques with UV and IR lighting. This research evinced a change in the composition and evolution of writing materials (inks and pigments) and provided information concerning historical use of the documents and its actual legal value as a property document. It also stressed the need of spanning these results to an extensive research attaining other regions of Mexico, in order to fully understand the Mexican documents particularities, aging and deterioration. This, in turn, will provide not only historical material information but also an invaluable scoop to understand deterioration and conservation issues.


Sign in / Sign up

Export Citation Format

Share Document