scholarly journals Glucose-Mediated Repression of Menin Promotes Pancreatic β-Cell Proliferation

Endocrinology ◽  
2012 ◽  
Vol 153 (2) ◽  
pp. 602-611 ◽  
Author(s):  
Hongli Zhang ◽  
Wenyi Li ◽  
Qidi Wang ◽  
Xiao Wang ◽  
Fengying Li ◽  
...  

Menin, encoded by the Men1 gene, is responsible for β-cell tumor formation in patients with multiple endocrine neoplasia type 1. Recently, menin has been proven to negatively regulate β-cell proliferation during pregnancy. However, it is unclear whether menin is involved in pancreatic β-cell proliferation in response to other physiological replication stimuli, such as glucose. In this study, we found that the menin level was significantly reduced in high glucose-treated INS1 cells and primary rat islets, both with increased proliferation. A similar observation was found in islets isolated from rats subjected to 72-h continuous glucose infusion. The glucose-induced proliferation was inhibited by menin overexpression. Further molecular studies showed that glucose-induced menin suppression was blocked by PI3K/Akt pathway inhibitors. A major PI3K/Akt substrate, Foxo1, was shown to enhance menin transcription levels by binding the promoter region of the Men1 gene. Therefore, we conclude that glucose inhibits menin expression via the PI3K/Akt/Foxo1 pathway and hence promotes pancreatic β-cell proliferation. Our study suggests that menin might serve as an important intracellular target of glucose to mediate the mitogenic effect that glucose exerts in pancreatic β-cells.

2020 ◽  
Vol 25 (2) ◽  
pp. 23
Author(s):  
Diana Gamboa ◽  
Carlos E. Vázquez ◽  
Paul J. Campos

Type-1 diabetes mellitus (T1DM) is an autoimmune disease that has an impact on mortality due to the destruction of insulin-producing pancreatic β -cells in the islets of Langerhans. Over the past few years, the interest in analyzing this type of disease, either in a biological or mathematical sense, has relied on the search for a treatment that guarantees full control of glucose levels. Mathematical models inspired by natural phenomena, are proposed under the prey–predator scheme. T1DM fits in this scheme due to the complicated relationship between pancreatic β -cell population growth and leukocyte population growth via the immune response. In this scenario, β -cells represent the prey, and leukocytes the predator. This paper studies the global dynamics of T1DM reported by Magombedze et al. in 2010. This model describes the interaction of resting macrophages, activated macrophages, antigen cells, autolytic T-cells, and β -cells. Therefore, the localization of compact invariant sets is applied to provide a bounded positive invariant domain in which one can ensure that once the dynamics of the T1DM enter into this domain, they will remain bounded with a maximum and minimum value. Furthermore, we analyzed this model in a closed-loop scenario based on nonlinear control theory, and proposed bases for possible control inputs, complementing the model with them. These entries are based on the existing relationship between cell–cell interaction and the role that they play in the unchaining of a diabetic condition. The closed-loop analysis aims to give a deeper understanding of the impact of autolytic T-cells and the nature of the β -cell population interaction with the innate immune system response. This analysis strengthens the proposal, providing a system free of this illness—that is, a condition wherein the pancreatic β -cell population holds and there are no antigen cells labeled by the activated macrophages.


2021 ◽  
Vol 12 ◽  
Author(s):  
Michele Mishto ◽  
Artem Mansurkhodzhaev ◽  
Teresa Rodriguez-Calvo ◽  
Juliane Liepe

Increasing evidence suggests that post-translational peptide splicing can play a role in the immune response under pathological conditions. This seems to be particularly relevant in Type 1 Diabetes (T1D) since post-translationally spliced epitopes derived from T1D-associated antigens have been identified among those peptides bound to Human Leucocyte Antigen (HLA) class I and II complexes. Their immunogenicity has been confirmed through CD4+ and CD8+ T cell-mediated responses in T1D patients. Spliced peptides theoretically have a large sequence variability. This might increase the frequency of viral-human zwitter peptides, i.e. peptides that share a complete sequence homology irrespective of whether they originate from human or viral antigens, thereby impinging upon the discrimination between self and non-self antigens by T cells. This might increase the risk of autoimmune responses triggered by viral infections. Since enteroviruses and other viral infections have historically been associated with T1D, we investigated whether cis-spliced peptides derived from selected viruses might be able to trigger CD8+ T cell-mediated autoimmunity. We computed in silico viral-human non-spliced and cis-spliced zwitter epitope candidates, and prioritized peptide candidates based on: (i) their binding affinity to HLA class I complexes, (ii) human pancreatic β cell and medullary thymic epithelial cell (mTEC) antigens’ mRNA expression, (iii) antigen association with T1D, and (iv) potential hotspot regions in those antigens. Neglecting potential T cell receptor (TCR) degeneracy, no viral-human zwitter non-spliced peptide was found to be an optimal candidate to trigger a virus-induced CD8+ T cell response against human pancreatic β cells. Conversely, we identified some zwitter peptide candidates, which may be produced by proteasome-catalyzed peptide splicing, and might increase the likelihood of pancreatic β cells recognition by virus-specific CD8+ T cell clones, therefore promoting β cell destruction in the context of viral infections.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Yanmei Lou ◽  
Muyan Kong ◽  
Leyan Li ◽  
Yu Hu ◽  
Wenjun Zhai ◽  
...  

Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by insulin deficiency due to pancreatic β-cell damage and leads to hyperglycemia. The precise molecular mechanisms of the etiology of T1DM are not completely understood. Oxidative stress and the antioxidant status of pancreatic β-cells play a vital role in the pathogenesis and progression of T1DM. The Keap1/Nrf2 signaling pathway plays a critical role in cellular resistance to oxidative stress. This study is aimed at investigating the role of the Keap1/Nrf2 signaling pathway in the progression of T1DM. An alloxan- (ALX-) stimulated T1DM animal model in wild-type (WT) and Nrf2 knockout (Nrf2-/-) C57BL/6J mice and a mouse pancreatic β-cell line (MIN6) were established. Compared with the tolerant (ALX exposure, nondiabetic) WT mice, the sensitive (ALX exposure, diabetic) WT mice exhibited higher blood glucose levels and lower plasma insulin levels. The Keap1/Nrf2 signaling pathway was significantly inhibited in the sensitive WT mice, which was reflected by overexpression of Keap1 and low expression of Nrf2, accompanied by a marked decrease in the expression of the antioxidative enzymes. Compared with WT mice, the Nrf2-/- mice had an increased incidence of T1DM and exhibited more severe pancreatic β-cell damage. The results of in vitro experiments showed that ALX significantly inhibited the viability and proliferation and promoted the apoptosis of MIN6 cells. ALX also markedly increased intracellular ROS production and caused DNA damage in MIN6 cells. In addition, the Keap1/Nrf2 signaling pathway was significantly inhibited in the damaged MIN6 cells. Moreover, Nrf2 silencing by transfection with Nrf2 siRNA markedly exacerbated ALX-induced MIN6 cell injury. Conclusively, this study demonstrates that inhibition of the Keap1/Nrf2 signaling pathway could significantly promote the incidence of T1DM. This study indicates that activation of Keap1/Nrf2 signaling in pancreatic β-cells may be a useful pharmacological strategy for the clinical prevention and treatment of T1DM.


2016 ◽  
Vol 229 (2) ◽  
pp. 73-83 ◽  
Author(s):  
Binbin Guan ◽  
Wenyi Li ◽  
Fengying Li ◽  
Yun Xie ◽  
Qicheng Ni ◽  
...  

The cellular and molecular mechanisms of glucose-stimulated β-cell proliferation are poorly understood. Recently, secreted frizzled-related protein 5 (encoded by Sfrp5; a Wnt signaling inhibitor) has been demonstrated to be involved in β-cell proliferation in obesity. A previous study demonstrated that glucose enhanced Wnt signaling to promote cell proliferation. We hypothesized that inhibition of SFRP5 contributes to glucose-stimulated β-cell proliferation. In this study, we found that the Sfrp5 level was significantly reduced in high glucose-treated INS-1 cells, primary rat β-cells, and islets isolated from glucose-infused rats. Overexpression of SFRP5 diminished glucose-stimulated proliferation in both INS-1 cells and primary β-cells, with a concomitant inhibition of the Wnt signaling pathway and decreased cyclin D2 expression. In addition, we showed that glucose-induced Sfrp5 suppression was modulated by the PI3K/AKT pathway. Therefore, we conclude that glucose inhibits Sfrp5 expression via the PI3K/AKT pathway and hence promotes rat pancreatic β-cell proliferation.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Angel Nadal ◽  
Talia Boronat-Belda ◽  
Ivan Quesada ◽  
Esther Fuentes ◽  
Jan-Ake Gustafsson ◽  
...  

Abstract Bisphenol-A (BPA) is one of the highest volume chemicals produced worldwide. It is used as the base compound in the manufacture of polycarbonate plastics, epoxies and resins. Humans are consistently exposed to BPA and consistently it has been detected in the majority of individuals examined. Experimental research in animals, as well as human epidemiological studies, converge to conclude that BPA is a risk factor for the development of type 2 diabetes. In previous studies we have demonstrated that the exposure to BPA during embryonic development promote an increment of pancreatic β-cell mass. This was correlated with increased β-cell division and altered global gene expression in pancreatic β-cells. The aim of this work was to determinate whether ERβ was involved in the in the β-cell mass and proliferation increment observed in male mice offspring. ERβ+/- pregnant mice were treated with vehicle or BPA (10 μg/kg/day) from day 9 to 16 of gestation. Offspring pancreatic β-cell mass was measured at postnatal day 0 (P0) and 30 (P30). For ex vivo experiments Wild-type (WT) and ERβ-/- neonates as well as adult male and female mice were used. For in vitro, single islets cells were cultured for 48 h in the presence of 10 μmol/L BrdU, and vehicle, BPA (1, 10, 100 nM) or the specific ERβ agonist WAY200070 (1, 10, 100 nM). β-cell proliferation rate was quantified as the percentage of BrdU-positive pancreatic β-cells. In vivo exposure to BPA during pregnancy promoted an increment of pancreatic β-cell mass and proliferation in WT mice at P30 which was absent in ERβ -/- mice. In order to explore if these changes were related to a direct action of BPA on pancreatic β-cell division we performed a series of ex vivo experiments. Augmented β-cell proliferation rate was observed in BPA-exposed β-cells isolated from both adult male and female WT animals in comparison to controls. The increment was significant at all BPA doses tested. The effect was imitated by the selective ERβ agonist, WAY200070, and was abolished in cells from ERβ-/- mice. We also explored the effects of BPA in pancreatic β-cells from neonates and found an increment in BPA-exposed cells compared to controls, although the difference was only significant at the dose of 1 nM. A similar effect was observed in neonate cells treated with WAY200070 (10 nM). The effects on β-cell replication were abolished in cells from ERβ-/- neonate mice treated either with BPA or WAY200070. Our findings suggest that BPA modulate pancreatic β-cell growth and mass in an ERβ-dependent manner. This could have important implications for metabolic programming of T2DM. Ministerio de Economía y Competitividad, Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) grants BPU2017-86579-R (AN) and BFU2016-77125-R (IQ); Generalitat Valenciana PROMETEO II/2015/016 (AN). CIBERDEM is an initiative of the Instituto de Salud Carlos III.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brenda Strutt ◽  
Sandra Szlapinski ◽  
Thineesha Gnaneswaran ◽  
Sarah Donegan ◽  
Jessica Hill ◽  
...  

AbstractThe apelin receptor (Aplnr) and its ligands, Apelin and Apela, contribute to metabolic control. The insulin resistance associated with pregnancy is accommodated by an expansion of pancreatic β-cell mass (BCM) and increased insulin secretion, involving the proliferation of insulin-expressing, glucose transporter 2-low (Ins+Glut2LO) progenitor cells. We examined changes in the apelinergic system during normal mouse pregnancy and in pregnancies complicated by glucose intolerance with reduced BCM. Expression of Aplnr, Apelin and Apela was quantified in Ins+Glut2LO cells isolated from mouse pancreata and found to be significantly higher than in mature β-cells by DNA microarray and qPCR. Apelin was localized to most β-cells by immunohistochemistry although Aplnr was predominantly associated with Ins+Glut2LO cells. Aplnr-staining cells increased three- to four-fold during pregnancy being maximal at gestational days (GD) 9–12 but were significantly reduced in glucose intolerant mice. Apelin-13 increased β-cell proliferation in isolated mouse islets and INS1E cells, but not glucose-stimulated insulin secretion. Glucose intolerant pregnant mice had significantly elevated serum Apelin levels at GD 9 associated with an increased presence of placental IL-6. Placental expression of the apelinergic axis remained unaltered, however. Results show that the apelinergic system is highly expressed in pancreatic β-cell progenitors and may contribute to β-cell proliferation in pregnancy.


2021 ◽  
Author(s):  
Zehua Liu ◽  
Bo Li

Recent studies support the view that highland barley as whole grain diet showed anti-hyperglycemic effects, while little information is available about the active compounds that could ameliorate pancreatic β cells...


Endocrinology ◽  
2013 ◽  
Vol 154 (1) ◽  
pp. 54-64 ◽  
Author(s):  
Kazuki Orime ◽  
Jun Shirakawa ◽  
Yu Togashi ◽  
Kazuki Tajima ◽  
Hideaki Inoue ◽  
...  

Decreased β-cell mass is a hallmark of type 2 diabetes, and therapeutic approaches to increase the pancreatic β-cell mass have been expected. In recent years, gastrointestinal incretin peptides have been shown to exert a cell-proliferative effect in pancreatic β-cells. Trefoil factor 2 (TFF2), which is predominantly expressed in the surface epithelium of the stomach, plays a role in antiapoptosis, migration, and proliferation. The TFF family is expressed in pancreatic β-cells, whereas the role of TFF2 in pancreatic β-cells has been obscure. In this study, we investigated the mechanism by which TFF2 enhances pancreatic β-cell proliferation. The effects of TFF2 on cell proliferation were evaluated in INS-1 cells, MIN6 cells, and mouse islets using an adenovirus vector containing TFF2 or a recombinant TFF2 peptide. The forced expression of TFF2 led to an increase in bromodeoxyuridine (BrdU) incorporation in both INS-1 cells and islets, without any alteration in insulin secretion. TFF2 significantly increased the mRNA expression of cyclin A2, D1, D2, D3, and E1 in islets. TFF2 peptide increased ERK1/2 phosphorylation and BrdU incorporation in MIN6 cells. A MAPK kinase inhibitor (U0126) abrogated the TFF2 peptide-mediated proliferation of MIN6 cells. A CX-chemokine receptor-4 antagonist also prevented the TFF2 peptide-mediated increase in ERK1/2 phosphorylation and BrdU incorporation in MIN6 cells. These results indicated that TFF2 is involved in β-cell proliferation at least partially via CX-chemokine receptor-4-mediated ERK1/2 phosphorylation, suggesting TFF2 may be a novel target for inducing β-cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document