scholarly journals The Circadian Clock Gene Bmal1 Modulates Myometrium Contractile Function in Pregnant Mice

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A754-A755
Author(s):  
Thu Van Quynh Duong ◽  
Alexandra Yaw ◽  
Duong Nguyen ◽  
Hanne Mette Hoffmann

Abstract Caesarian section should be avoided unless medically required. Caesarian section is often a result of failed labor enhancement. While most natural births occur at night, labor enhancement is often scheduled during the day. We propose that the disparity between the commonly used timing of labor enhancement in the clinic, from the timing of natural birth, could contribute to the high rate of labor induction failure. Oxytocin receptor agonists are the most used labor enhancing agents. In pregnant non-human primates, oxytocin enhances uterine contractions more efficiently at night than during the day, suggesting a daily change in uterine sensitivity to oxytocin in pregnancy. To identify the molecular mechanisms generating daily changes in uterine function, we here explore the role of the molecular clock gene, Bmal1 (Brain and muscle ARNTL1-like), in the pregnant mouse myometrium. BMAL1 is a transcription factor required to generated circadian rhythms at the cellular level. We hypothesize that Bmal1 in uterine myometrial cells generates circadian rhythms and establishes the daily change in uterine contractile response to oxytocin. To evaluate circadian rhythms ex vivo, we collected myometrium samples from the validated circadian Per2:luciferase reporter mice at gestation day 17-18. We found that the pregnant mouse myometrium possesses circadian rhythms, which are generated by the molecular clock, as triple transgenic Per2:luciferase mice with Bmal1 conditionally deleted in the myometrium (cKO) do not have rhythmic expression of the Per2:luciferase reporter. To determine if BMAL1 is required to establish uterine contractions, we used a myograph to measure ex vivo uterine contractions at gestation day 17-18. In controls, uterine contraction force was significantly higher at ZT15 (3h after lights OFF) versus ZT3 (3h after lights ON). Interestingly, our preliminary data show increased basal contractile force at ZT15 in cKO as compared to controls. In addition, the cKO uterus contracted stronger to oxytocin than controls. Our findings identify Bmal1 as a clock gene modulating basal contractions in the mouse uterus and indicate Bmal1 might be a regulator of uterine sensitivity to oxytocin. Future work will focus on identifying the molecular mechanisms driven by BMAL1 to regulate uterine function in pregnancy. This work has the potential to provide insights into how we can improve labor enhancing treatment strategies in the clinic in the future.

Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Tianfei Hou ◽  
Wen Su ◽  
Ming C Gong ◽  
Zhenheng Guo

Db/db mouse, which lacks functional leptin receptor, is an extensively used model of obesity and type 2 diabetes. We and others have demonstrated that db/db mouse has disruptions in circadian rhythms of behavior, physiology and some clock genes. However, systemic investigations of the alterations in clock gene oscillations in multiple systems with high time resolution in this model are impeded by the impractical demand for large number of animals. To overcome this limitation, we cross bred the db/db mouse with mPer2 Luc mouse in which the clock gene Period2 is fused with a luciferase reporter thus allow real-time monitoring of the clock gene Per2 oscillations. The generated db/db-mPer2 Luc mice had the typical diabetic mellitus including obesity, hyperglycemia, hyperinsulinemia, glucose intolerance and insulin resistance. In addition, the db/db-mPer2 Luc mice also exhibited disruptions in circadian rhythms in behavior (locomotor activity), physiology (blood pressure) and metabolism (respiratory exchange ratio and energy expenditure). Using the LumiCycle system, we monitored in real-time of the Per2 oscillations in both the SCN central clock and multiple peripheral tissues ex vivo . The results showed no difference in the phase of the central SCN Per2 oscillation. However, the peripheral tissues that related to metabolism, such as liver and white adipose clocks, displayed 3.28±0.86 and 4.64±1.06 hours of phase advance respectively. Aorta, mesentery artery and kidney, organs play important role in blood pressure homeostasis, showed 0.99±0.37, and 2.12±0.4, and 2.21±0.5 hours phase advance respectively. Interestingly, no difference was observed in the lung and adrenal gland. We then investigated the Per2 oscillation in vivo by using the IVIS imaging system. Consistent with the ex vivo results, the liver Per2 oscillation were phase advanced in vivo. Our findings demonstrated that clock gene Per2 oscillations were disrupted in multiple peripheral tissues but not in central SCN. Moreover, the extent of phase advance in peripheral tissue varies largely. Our results suggest dyssynchrony of the clock oscillations among various peripheral systems likely contribute to the multiple disruptions in physiology and metabolism in diabetic db/db mice.


2021 ◽  
Author(s):  
Aziz Zafar ◽  
Rebeccah Overton ◽  
Ziad Attia ◽  
Ahmet Ay ◽  
Krista Ingram

Abstract Mood disorders, including anxiety, are associated with disruptions in circadian rhythms and are linked to polymorphisms in circadian clock genes. Molecular mechanisms underlying these connections may be direct—via transcriptional activity of clock genes on downstream mood pathways in the brain, or indirect—via clock gene influences on the phase and amplitude of circadian rhythms which, in turn, modulate physiological processes influencing mood. Employing machine learning combined with statistical approaches, we explored clock genotype combinations that predict risk for anxiety symptoms in a deeply phenotyped population. We identified multiple novel circadian genotypes predictive of anxiety, with the PER3B-AG/CRY1-CG genotype being the strongest predictor of anxiety risk in males. Molecular chronotyping, using clock gene expression oscillations, revealed that advanced circadian phase and robust circadian amplitudes are associated with high levels of anxiety symptoms. Further analyses revealed that individuals with advanced phases and pronounced circadian misalignment were at higher risk for severe anxiety symptoms. Our results support both direct and indirect influences of clock gene variants on mood: while sex-specific clock genotype combinations predictive of anxiety symptoms suggest direct effects on mood pathways, the mediation of PER3B effects on anxiety via diurnal preference measures and the association of circadian phase with anxiety symptoms provide evidence for indirect effects of the molecular clockwork on mood. Unraveling the complex molecular mechanisms underlying the links between circadian physiology and mood is essential to identifying the core clock genes to target in future functional studies, thereby advancing the development of non-invasive treatments for anxiety-related disorders.


2020 ◽  
pp. 096032712095425
Author(s):  
Zhenpeng Wang ◽  
Yanhong Shan ◽  
Yi Yang ◽  
Tianshu Wang ◽  
Zhiheng Guo

The pathogenesis of preeclampsia (PE) is complicated and multiple risk factors have been associated with its occurrence. Still, the underlying molecular mechanisms involved in PE remain elusive. Aberrant apoptosis and insufficient invasion of trophoblasts have been observed and are considered vital pathological features in PE. Herein, we found that miR-155 can specifically degrade the mRNA of the Hedgehog ligand sonic hedgehog (SHH), using dual luciferase reporter assays. Quantitative real-time PCR found that administering miR-155 mimics or inhibitors could significantly decrease or increase the expression of SHH in the trophoblasts, respectively. The transcription levels of miR-155 in the placenta were higher in patients with PE compared to the levels in healthy pregnant women, as shown by quantitative real-time PCR. Serum levels of miR-155 could predict the diagnosis of PE by receiver operating characteristic curve analysis and diagnosis evaluation tests. A significant increase in apoptosis was observed after administering miR-155 in HTR8/SVneo cells cultured ex vivo, accompanied by reduced proliferation. Mechanistically, transcriptional activity and expression of GLi1 were also inhibited under treatment of miR-155, and could be recovered after supplying additional recombinant human SHH to primary trophoblasts from patients, as determined by luciferase activity assays and western blotting. We further found that inhibiting miR-155 increased the production of SHH and improved the phenotype in primary trophoblasts from patients with PE. Our data show that miR-155 regulates apoptosis of trophoblasts in PE, which has potential value for predicting PE risk and might be deemed as a therapeutic target for treating PE.


2014 ◽  
Vol 84 (1-2) ◽  
pp. 79-91 ◽  
Author(s):  
Amin F. Majdalawieh ◽  
Hyo-Sung Ro

Background: Foam cell formation resulting from disrupted macrophage cholesterol efflux, which is triggered by PPARγ1 and LXRα, is a hallmark of atherosclerosis. Sesamin and sesame oil exert anti-atherogenic effects in vivo. However, the exact molecular mechanisms underlying such effects are not fully understood. Aim: This study examines the potential effects of sesamin (0, 25, 50, 75, 100 μM) on PPARγ1 and LXRα expression and transcriptional activity as well as macrophage cholesterol efflux. Methods: PPARγ1 and LXRα expression and transcriptional activity are assessed by luciferase reporter assays. Macrophage cholesterol efflux is evaluated by ApoAI-specific cholesterol efflux assays. Results: The 50 μM, 75 μM, and 100 μM concentrations of sesamin up-regulated the expression of PPARγ1 (p< 0.001, p < 0.001, p < 0.001, respectively) and LXRα (p = 0.002, p < 0.001, p < 0.001, respectively) in a concentration-dependent manner. Moreover, 75 μM and 100 μM concentrations of sesamin led to 5.2-fold (p < 0.001) and 6.0-fold (p<0.001) increases in PPAR transcriptional activity and 3.9-fold (p< 0.001) and 4.2-fold (p < 0.001) increases in LXR transcriptional activity, respectively, in a concentration- and time-dependent manner via MAPK signaling. Consistently, 50 μM, 75 μM, and 100 μM concentrations of sesamin improved macrophage cholesterol efflux by 2.7-fold (p < 0.001), 4.2-fold (p < 0.001), and 4.2-fold (p < 0.001), respectively, via MAPK signaling. Conclusion: Our findings shed light on the molecular mechanism(s) underlying sesamin’s anti-atherogenic effects, which seem to be due, at least in part, to its ability to up-regulate PPARγ1 and LXRα expression and transcriptional activity, improving macrophage cholesterol efflux. We anticipate that sesamin may be used as a therapeutic agent for treating atherosclerosis.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
You Shuai ◽  
Zhonghua Ma ◽  
Weitao Liu ◽  
Tao Yu ◽  
Changsheng Yan ◽  
...  

Abstract Background Gastric cancer (GC) is the third leading cause of cancer-related mortality globally. Long noncoding RNAs (lncRNAs) are dysregulated in obvious malignancies including GC and exploring the regulatory mechanisms underlying their expression is an attractive research area. However, these molecular mechanisms require further clarification, especially upstream mechanisms. Methods LncRNA MNX1-AS1 expression in GC tissue samples was investigated via microarray analysis and further determined in a cohort of GC tissues via quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. Cell proliferation and flow cytometry assays were performed to confirm the roles of MNX1-AS1 in GC proliferation, cell cycle regulation, and apoptosis. The influence of MNX1-AS1 on GC cell migration and invasion was explored with Transwell assays. A xenograft tumour model was established to verify the effects of MNX1-AS1 on in vivo tumourigenesis. The TEAD4-involved upstream regulatory mechanism of MNX1-AS1 was explored through ChIP and luciferase reporter assays. The mechanistic model of MNX1-AS1 in regulating gene expression was further detected by subcellular fractionation, FISH, RIP, ChIP and luciferase reporter assays. Results It was found that MNX1-AS1 displayed obvious upregulation in GC tissue samples and cell lines, and ectopic expression of MNX1-AS1 predicted poor clinical outcomes for patients with GC. Overexpressed MNX1-AS1 expression promoted proliferation, migration and invasion of GC cells markedly, whereas decreased MNX1-AS1 expression elicited the opposite effects. Consistent with the in vitro results, MNX1-AS1 depletion effectively inhibited the growth of xenograft tumour in vivo. Mechanistically, TEAD4 directly bound the promoter region of MNX1-AS1 and stimulated the transcription of MNX1-AS1. Furthermore, MNX1-AS1 can sponge miR-6785-5p to upregulate the expression of BCL2 in GC cells. Meanwhile, MNX1-AS1 suppressed the transcription of BTG2 by recruiting polycomb repressive complex 2 to BTG2 promoter regions. Conclusions Our findings demonstrate that MNX1-AS1 may be able to serve as a prognostic indicator in GC patients and that TEAD4-activatd MNX1-AS1 can promote GC progression through EZH2/BTG2 and miR-6785-5p/BCL2 axes, implicating it as a novel and potent target for the treatment of GC.


Science ◽  
2021 ◽  
Vol 372 (6539) ◽  
pp. eabf1941
Author(s):  
Sandipan Ray ◽  
Utham K. Valekunja ◽  
Alessandra Stangherlin ◽  
Steven A. Howell ◽  
Ambrosius P. Snijders ◽  
...  

Abruzzi et al. argue that transcriptome oscillations found in our study in the absence of Bmal1 are of low amplitude, statistical significance, and consistency. However, their conclusions rely solely on a different statistical algorithm than we used. We provide statistical measures and additional analyses showing that our original analyses and observations are accurate. Further, we highlight independent lines of evidence indicating Bmal1-independent 24-hour molecular oscillations.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Na Wu ◽  
Chengying Li ◽  
Bin Xu ◽  
Ying Xiang ◽  
Xiaoyue Jia ◽  
...  

Abstract Background Circular RNA (circRNA) have been reported to play important roles in cardiovascular diseases including myocardial infarction and heart failure. However, the role of circRNA in atrial fibrillation (AF) has rarely been investigated. We recently found a circRNA hsa_circ_0099734 was significantly differentially expressed in the AF patients atrial tissues compared to paired control. We aim to investigate the functional role and molecular mechanisms of mmu_circ_0005019 which is the homologous circRNA in mice of hsa_circ_0099734 in AF. Methods In order to investigate the effect of mmu_circ_0005019 on the proliferation, migration, differentiation into myofibroblasts and expression of collagen of cardiac fibroblasts, and the effect of mmu_circ_0005019 on the apoptosis and expression of Ito, INA and SK3 of cardiomyocytes, gain- and loss-of-function of cell models were established in mice cardiac fibroblasts and HL-1 atrial myocytes. Dual-luciferase reporter assays and RIP were performed to verify the binding effects between mmu_circ_0005019 and its target microRNA (miRNA). Results In cardiac fibroblasts, mmu_circ_0005019 showed inhibitory effects on cell proliferation and migration. In cardiomyocytes, overexpression of mmu_circ_0005019 promoted Kcnd1, Scn5a and Kcnn3 expression. Knockdown of mmu_circ_0005019 inhibited the expression of Kcnd1, Kcnd3, Scn5a and Kcnn3. Mechanistically, mmu_circ_0005019 exerted biological functions by acting as a miR-499-5p sponge to regulate the expression of its target gene Kcnn3. Conclusions Our findings highlight mmu_circ_0005019 played a protective role in AF development and might serve as an attractive candidate target for AF treatment.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jizhe Yu ◽  
Yushuang Qin ◽  
Naxin Zhou

Abstract Background The dysregulation of circular RNAs (circRNAs) has been identified in various human diseases, including osteoarthritis (OA). The purpose of this study was to identify the role and mechanism of circ_SLC39A8 in regulating the progression of OA. Methods The expression levels of circ_SLC39A8, miR-591, and its potential target gene, interleukin-1-receptor-associated kinase 3 (IRAK3), were identified by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and apoptosis were determined by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. The relationship between miR-591 and circ_SLC39A8 or IRAK3 was predicted by bioinformatics tools and verified by dual-luciferase reporter. Results Circ_SLC39A8 and IRAK3 were upregulated and miR-591 was downregulated in OA cartilage tissues. Knockdown of circ_SLC39A8 inhibited apoptosis and inflammation in OA chondrocytes, while these effects were reversed by downregulating miR-591. Promotion cell viability effects of miR-591 were partially reversed by IRAK3 overexpression. Conclusion Our findings indicated that knockdown of circ_SLC39A8 delayed the progression of OA via modulating the miR-591-IRAK3 axis, providing new insight into the molecular mechanisms of OA pathogenesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Antara Chatterjee ◽  
Rojan Saghian ◽  
Anna Dorogin ◽  
Lindsay S. Cahill ◽  
John G. Sled ◽  
...  

AbstractThe cervix is responsible for maintaining pregnancy, and its timely remodeling is essential for the proper delivery of a baby. Cervical insufficiency, or “weakness”, may lead to preterm birth, which causes infant morbidities and mortalities worldwide. We used a mouse model of pregnancy and term labor, to examine the cervical structure by histology (Masson Trichome and Picrosirius Red staining), immunohistochemistry (Hyaluronic Acid Binding Protein/HABP), and ex-vivo MRI (T2-weighted and diffusion tensor imaging), focusing on two regions of the cervix (i.e., endocervix and ectocervix). Our results show that mouse endocervix has a higher proportion of smooth muscle cells and collagen fibers per area, with more compact tissue structure, than the ectocervix. With advanced gestation, endocervical changes, indicative of impending delivery, are manifested in fewer smooth muscle cells, expansion of the extracellular space, and lower presence of collagen fibers. MRI detected three distinctive zones in pregnant mouse endocervix: (1) inner collagenous layer, (2) middle circular muscular layer, and (3) outer longitudinal muscular layer. Diffusion MRI images detected changes in tissue organization as gestation progressed suggesting the potential application of this technique to non-invasively monitor cervical changes that precede the onset of labor in women at risk for preterm delivery.


Sign in / Sign up

Export Citation Format

Share Document