scholarly journals pp60c-src and related tyrosine kinases: a role in the assembly and reorganization of matrix adhesions

2001 ◽  
Vol 114 (12) ◽  
pp. 2279-2289 ◽  
Author(s):  
Tova Volberg ◽  
Lewis Romer ◽  
Eli Zamir ◽  
Benjamin Geiger

Activation of tyrosine kinases during integrin-mediated cell-matrix adhesion is involved both in the regulation of focal contact assembly and in the initiation of signaling processes at the cell-matrix adhesive interface. In order to determine the role of pp60c-src and related kinases in these processes, we have compared the dynamic reorganization of phosphotyrosine, vinculin, focal adhesion kinase and tensin in cells with altered expression of Src-family kinases. Both null cells for pp60c-src and triple knockout cells for pp60c-src, pp59fyn, and pp62c-yes exhibited decreased phosphotyrosine levels in focal contacts when compared with wild-type cells. pp60c-src-null cells also exhibited faster assembly of cell-matrix adhesions and a more exuberant recruitment of FAK to these sites. Tensin, which normally segregates into fibrillar adhesions was localized in large focal contacts in the two mutant cell lines, suggesting involvement of pp60c-src in the segregation of focal contacts and fibrillar adhesions. Moreover, treatment of wild-type cells with tyrphostin AG1007, which inhibits both pp60c-src and FAK activity, induced accumulation of tensin in peripheral focal adhesions. These findings demonstrate that Src family kinases, and pp60c-src in particular, have a central role in regulating protein dynamics at cell-matrix interfaces, both during early stages of interaction and in mature focal contacts.

2011 ◽  
Vol 8 (62) ◽  
pp. 1217-1232 ◽  
Author(s):  
Huajian Gao ◽  
Jin Qian ◽  
Bin Chen

Cell–matrix adhesion depends on the collective behaviours of clusters of receptor–ligand bonds called focal contacts between cell and extracellular matrix. While the behaviour of a single molecular bond is governed by statistical mechanics at the molecular scale, continuum mechanics should be valid at a larger scale. This paper presents an overview of a series of recent theoretical studies aimed at probing the basic mechanical principles of focal contacts in cell–matrix adhesion via stochastic–elastic models in which stochastic descriptions of molecular bonds and elastic descriptions of interfacial traction–separation are unified in a single modelling framework. The intention here is to illustrate these principles using simple analytical and numerical models. The aim of the discussions is to provide possible clues to the following questions: why does the size of focal adhesions (FAs) fall into a narrow range around the micrometre scale? How can cells sense and respond to substrates of varied stiffness via FAs? How do the magnitude and orientation of mechanical forces affect the binding dynamics of FAs? The effects of cluster size, cell–matrix elastic modulus, loading direction and cytoskeletal pretension on the lifetime of FA clusters have been investigated by theoretical arguments as well as Monte Carlo numerical simulations, with results showing that intermediate adhesion size, stiff substrate, cytoskeleton stiffening, low-angle pulling and moderate cytoskeletal pretension are factors that contribute to stable FAs. From a mechanistic point of view, these results provide possible explanations for a wide range of experimental observations and suggest multiple mechanisms by which cells can actively control adhesion and de-adhesion via cytoskeletal contractile machinery in response to mechanical properties of their surroundings.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 388
Author(s):  
Brice Chanez ◽  
Kevin Ostacolo ◽  
Ali Badache ◽  
Sylvie Thuault

Regulation of microtubule dynamics by plus-end tracking proteins (+TIPs) plays an essential role in cancer cell migration. However, the role of +TIPs in cancer cell invasion has been poorly addressed. Invadopodia, actin-rich protrusions specialized in extracellular matrix degradation, are essential for cancer cell invasion and metastasis, the leading cause of death in breast cancer. We, therefore, investigated the role of the End Binding protein, EB1, a major hub of the +TIP network, in invadopodia functions. EB1 silencing increased matrix degradation by breast cancer cells. This was recapitulated by depletion of two additional +TIPs and EB1 partners, APC and ACF7, but not by the knockdown of other +TIPs, such as CLASP1/2 or CLIP170. The knockdown of Focal Adhesion Kinase (FAK) was previously proposed to similarly promote invadopodia formation as a consequence of a switch of the Src kinase from focal adhesions to invadopodia. Interestingly, EB1-, APC-, or ACF7-depleted cells had decreased expression/activation of FAK. Remarkably, overexpression of wild type FAK, but not of FAK mutated to prevent Src recruitment, prevented the increased degradative activity induced by EB1 depletion. Overall, we propose that EB1 restricts invadopodia formation through the control of FAK and, consequently, the spatial regulation of Src activity.


2020 ◽  
Vol 18 ◽  
Author(s):  
Lingdi Nie ◽  
Wen-Rui Ye ◽  
Shangbin Chen ◽  
Domenico Chirchiglia ◽  
Minyan Wang

: Src family kinases (SFK) are a group of non-receptor tyrosine kinases which play a pivotal role in cellular responses and oncogenesis. Accumulating evidence suggest that SFK also act as a key component in signalling pathways of the central nervous system (CNS) in both physiological and pathological conditions. Despite the crucial role of SFK in signal transduction of the CNS, the relationship between SFK and molecules implicated in pain has been relatively unexplored. This article briefly reviews the recent advances uncovering the interplay of SFK with diverse membrane proteins and intracellular proteins in the CNS and the importance of SFK in the pathophysiology of migraine and neuropathic pain. Mechanisms underlying the role of SFK in these conditions and potential clinical applications of SFK inhibitors in neurological diseases are also summarised. We propose that SFK are the convergent point of signalling pathways in migraine and neuropathic pain and may constitute a promising therapeutic target for these diseases.


1999 ◽  
Vol 112 (18) ◽  
pp. 3081-3090 ◽  
Author(s):  
S. Hiscox ◽  
W.G. Jiang

Ezrin, radixin, moesin and merlin form a subfamily of conserved proteins in the band 4.1 superfamily. The function of these proteins is to link the plasma membrane to the actin cytoskeleton. Merlin is defective or absent in schwannomas and meningiomas and has been suggested to function as a tumour suppressor. In this study, we have examined the role of ezrin as a potential regulator of the adhesive and invasive behaviour of tumour cells. We have shown that following inhibition of ezrin expression in colo-rectal cancer cells using antisense oligonucleotides, these cells displayed a reduced cell-cell adhesiveness together with a gain in their motile and invasive behaviour. These cells also displayed increased spreading over matrix-coated surfaces. Immunofluorescence studies revealed that antisense-treated cells also displayed an increased staining of paxillin in areas representing focal adhesions. Furthermore, coprecipitation studies revealed an association of ezrin with E-cadherin and beta-catenin. Induction of the phosphorylation of ezrin by orthovanadate and hepatocyte growth factor/scatter factor resulted in changes similar to those seen with antisense treatment, together with a marked decrease in the association of ezrin with both beta-catenin and E-cadherin. It is concluded that ezrin regulates cell-cell and cell-matrix adhesion, by interacting with cell adhesion molecules E-cadherin and beta-catenin, and may thus play an important role in the control of adhesion and invasiveness of cancer cells.


2000 ◽  
Vol 11 (10) ◽  
pp. 3353-3364 ◽  
Author(s):  
Zhantao Yang ◽  
Themis R. Kyriakides ◽  
Paul Bornstein

Thrombospondin 2 (TSP2)-null mice, generated by disruption of theThbs2 gene, display a variety of connective tissue abnormalities, including fragile skin and the presence of abnormally large collagen fibrils with irregular contours in skin and tendon. In this study we demonstrate that TSP2-null skin fibroblasts show a defect in attachment to a number of matrix proteins, and a reduction in cell spreading. To investigate the molecular mechanisms responsible for these abnormal cell–matrix interactions, we compared the levels of matrix metalloproteinases (MMPs) in wild-type and mutant fibroblasts. Isolation and analysis of gelatinases from conditioned media by gelatin-agarose affinity chromatography and gelatinolytic assays demonstrated that TSP2-null fibroblasts produce a 2-fold increase in gelatinase A (MMP2) compared with wild-type cells. The adhesive defect was corrected by treatment of TSP2-null fibroblasts with soluble TSP2, with the MMP inhibitors BB94 and tissue inhibitor of metalloproteinase-2, and with a neutralizing antibody to MMP2. Moreover, stable transfection of TSP2-null fibroblasts with mouse TSP2 cDNA corrected both the adhesive defect and the altered expression of MMP2. Finally, MMP2 was shown to interact with TSP2 in a direct-binding plate assay. We conclude that TSP2 plays an important role in cell–matrix interactions, and that a deficiency in the protein results in increased levels of MMP2 that contribute to the adhesive defect in TSP2-null fibroblasts and could play a role in the complex phenotype of TSP2-null mice.


2004 ◽  
Vol 32 (3) ◽  
pp. 416-420 ◽  
Author(s):  
R. Zaidel-Bar ◽  
M. Cohen ◽  
L. Addadi ◽  
B. Geiger

The adhesion of cells to the extracellular matrix is a dynamic process, mediated by a series of cell-surface and matrix-associated molecules that interact with each other in a spatially and temporally regulated manner. These interactions play a major role in tissue formation, cellular migration and the induction of adhesion-mediated transmembrane signals. In this paper, we show that the formation of matrix adhesions is a hierarchical process, consisting of several sequential molecular events. One of the earliest steps in surface recognition is mediated, in some cells, by a 1 μm-thick cell-surface hyaluronan coat, which precedes the establishment of stable, cytoskeleton-associated adhesions. The earliest forms of these integrin-mediated contacts are dot-shaped FXs (focal complexes), which are formed under the protrusive lamellipodium of migrating cells. These adhesions recruit, sequentially, different anchor proteins that are involved in binding the actin cytoskeleton to the membrane. Conspicuous in its absence from FXs is zyxin, which is recruited to these sites only on retraction of the leading edge and the transformation of the FXs into a focal adhesion. Continuing application of force to focal adhesions results in the formation of fibrillar adhesions and reorganization of the extracellular matrix. The formation of these adhesions depends on actomyosin contractility and matrix pliability.


1998 ◽  
Vol 353 (1370) ◽  
pp. 847-856 ◽  
Author(s):  
M. Kedinger ◽  
O. Lefebvre ◽  
I. Duluc ◽  
J. N. Freund ◽  
P. Simon–Assmann

The intestinal mucosa represents an interesting model to study the cellular and molecular basis of epithelial–mesenchymal cross–talk participating in the development and maintenance of the digestive function. This cross–talk involves extracellular matrix molecules, cell–cell and cell–matrix adhesion molecules as well as paracrine factors and their receptors. The cellular and molecular unit is additionally regulated by hormonal, immune and neural inputs. Such integrated cell interactions are involved in pattern formation, in proximodistal regionalization, in maintenance of a gradient of epithelial proliferation and differentiation, and in epithelial cell migration. We focus predominantly on two aspects of these integrated interactions in this paper: (i) the role of basement membrane molecules, namely laminins, in the developmental and spatial epithelial behaviour; and (ii) the importance of the mesenchymal cell compartment in these processes.


2007 ◽  
Vol 179 (7) ◽  
pp. 1583-1597 ◽  
Author(s):  
Klodiana Jani ◽  
Frieder Schöck

The integrin family of heterodimeric transmembrane receptors mediates cell–matrix adhesion. Integrins often localize in highly organized structures, such as focal adhesions in tissue culture and myotendinous junctions in muscles. Our RNA interference screen for genes that prevent integrin-dependent cell spreading identifies Z band alternatively spliced PDZ-motif protein (zasp), encoding the only known Drosophila melanogaster Alp/Enigma PDZ-LIM domain protein. Zasp localizes to integrin adhesion sites and its depletion disrupts integrin adhesion sites. In tissues, Zasp colocalizes with βPS integrin in myotendinous junctions and with α-actinin in muscle Z lines. Zasp also physically interacts with α-actinin. Fly larvae lacking Zasp do not form Z lines and fail to recruit α-actinin to the Z line. At the myotendinous junction, muscles detach in zasp mutants with the onset of contractility. Finally, Zasp interacts genetically with integrins, showing that it regulates integrin function. Our observations point to an important function for Zasp in the assembly of integrin adhesion sites both in cell culture and in tissues.


1997 ◽  
Vol 236 (1) ◽  
pp. 66-75 ◽  
Author(s):  
Alain Guignandon ◽  
Yves Usson ◽  
Norbert Laroche ◽  
Marie-Hélène Lafage-Proust ◽  
Odile Sabido ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document