scholarly journals Do aquatic ectotherms perform better under hypoxia after warm acclimation?

2021 ◽  
Vol 224 (3) ◽  
pp. jeb232512
Author(s):  
Michael Collins ◽  
Manuela Truebano ◽  
Wilco C. E. P. Verberk ◽  
John I. Spicer

ABSTRACTAquatic animals increasingly encounter environmental hypoxia due to climate-related warming and/or eutrophication. Although acute warming typically reduces performance under hypoxia, the ability of organisms to modulate hypoxic performance via thermal acclimation is less understood. Here, we review the literature and ask whether hypoxic performance of aquatic ectotherms improves following warm acclimation. Interpretation of thermal acclimation effects is limited by reliance on data from experiments that are not designed to directly test for beneficial or detrimental effects on hypoxic performance. Most studies have tested hypoxic responses exclusively at test temperatures matching organisms' acclimation temperatures, precluding the possibility of distinguishing between acclimation and acute thermal effects. Only a few studies have applied appropriate methodology to identify beneficial thermal acclimation effects on hypoxic performance, i.e. acclimation to different temperatures prior to determining hypoxic responses at standardised test temperatures. These studies reveal that acute warming predominantly impairs hypoxic performance, whereas warm acclimation tends to be either beneficial or have no effect. If this generalises, we predict that warm-acclimated individuals in some species should outperform non-acclimated individuals under hypoxia. However, acclimation seems to only partially offset acute warming effects; therefore, aquatic ectotherms will probably display overall reduced hypoxic performance in the long term. Drawing on the appropriate methodology, future studies can quantify the ability of organisms to modulate hypoxic performance via (reversible) thermal acclimation and unravel the underlying mechanisms. Testing whether developmental acclimation and multigenerational effects allow for a more complete compensation is essential to allow us to predict species' resilience to chronically warmer, hypoxic environments.

2021 ◽  
Vol 12 ◽  
Author(s):  
Shi-Feng Huang ◽  
Xiao-Fei Peng ◽  
Lianggui Jiang ◽  
Ching Yuan Hu ◽  
Wen-Chu Ye

Lipid metabolism is an essential biological process involved in nutrient adjustment, hormone regulation, and lipid homeostasis. An irregular lifestyle and long-term nutrient overload can cause lipid-related diseases, including atherosclerosis, myocardial infarction (MI), obesity, and fatty liver diseases. Thus, novel tools for efficient diagnosis and treatment of dysfunctional lipid metabolism are urgently required. Furthermore, it is known that lncRNAs based regulation like sponging microRNAs (miRNAs) or serving as a reservoir for microRNAs play an essential role in the progression of lipid-related diseases. Accordingly, a better understanding of the regulatory roles of lncRNAs in lipid-related diseases would provide the basis for identifying potential biomarkers and therapeutic targets for lipid-related diseases. This review highlighted the latest advances on the potential biomarkers of lncRNAs in lipid-related diseases and summarised current knowledge on dysregulated lncRNAs and their potential molecular mechanisms. We have also provided novel insights into the underlying mechanisms of lncRNAs which might serve as potential biomarkers and therapeutic targets for lipid-related diseases. The information presented here may be useful for designing future studies and advancing investigations of lncRNAs as biomarkers for diagnosis, prognosis, and therapy of lipid-related diseases.


1977 ◽  
Vol 16 (01) ◽  
pp. 30-35 ◽  
Author(s):  
N. Agha ◽  
R. B. R. Persson

SummaryGelchromatography column scanning has been used to study the fractions of 99mTc-pertechnetate, 99mTcchelate and reduced hydrolyzed 99mTc in preparations of 99mTc-EDTA(Sn) and 99mTc-DTPA(Sn). The labelling yield of 99mTc-EDTA(Sn) chelate was as high as 90—95% when 100 μmol EDTA · H4 and 0.5 (Amol SnCl2 was incubated with 10 ml 99mTceluate for 30—60 min at room temperature. The study of the influence of the pH-value on the fraction of 99mTc-EDTA shows that pH 2.8—2.9 gave the best labelling yield. In a comparative study of the labelling kinetics of 99mTc-EDTA(Sn) and 99mTc- DTPA(Sn) at different temperatures (7, 22 and 37°C), no significant influence on the reduction step was found. The rate constant for complex formation, however, increased more rapidly with increased temperature for 99mTc-DTPA(Sn). At room temperature only a few minutes was required to achieve a high labelling yield with 99mTc-DTPA(Sn) whereas about 60 min was required for 99mTc-EDTA(Sn). Comparative biokinetic studies in rabbits showed that the maximum activity in kidneys is achieved after 12 min with 99mTc-EDTA(Sn) but already after 6 min with 99mTc-DTPA(Sn). The long-term disappearance of 99mTc-DTPA(Sn) from the kidneys is about five times faster than that for 99mTc-EDTA(Sn).


2015 ◽  
Vol 66 (3) ◽  
pp. 265-274 ◽  
Author(s):  
Y Cao ◽  
ÉM Neif ◽  
W Li ◽  
J Coppens ◽  
N Filiz ◽  
...  

Science ◽  
2013 ◽  
Vol 341 (6150) ◽  
pp. 1085-1089 ◽  
Author(s):  
H. D. Graven ◽  
R. F. Keeling ◽  
S. C. Piper ◽  
P. K. Patra ◽  
B. B. Stephens ◽  
...  

Seasonal variations of atmospheric carbon dioxide (CO2) in the Northern Hemisphere have increased since the 1950s, but sparse observations have prevented a clear assessment of the patterns of long-term change and the underlying mechanisms. We compare recent aircraft-based observations of CO2 above the North Pacific and Arctic Oceans to earlier data from 1958 to 1961 and find that the seasonal amplitude at altitudes of 3 to 6 km increased by 50% for 45° to 90°N but by less than 25% for 10° to 45°N. An increase of 30 to 60% in the seasonal exchange of CO2 by northern extratropical land ecosystems, focused on boreal forests, is implicated, substantially more than simulated by current land ecosystem models. The observations appear to signal large ecological changes in northern forests and a major shift in the global carbon cycle.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bailey Hiles-Murison ◽  
Andrew P. Lavender ◽  
Mark J. Hackett ◽  
Joshua J. Armstrong ◽  
Michael Nesbit ◽  
...  

AbstractRepeated sub-concussive impact (e.g. soccer ball heading), a significantly lighter form of mild traumatic brain injury, is increasingly suggested to cumulatively alter brain structure and compromise neurobehavioural function in the long-term. However, the underlying mechanisms whereby repeated long-term sub-concussion induces cerebral structural and neurobehavioural changes are currently unknown. Here, we utilised an established rat model to investigate the effects of repeated sub-concussion on size of lateral ventricles, cerebrovascular blood–brain barrier (BBB) integrity, neuroinflammation, oxidative stress, and biochemical distribution. Following repeated sub-concussion 3 days per week for 2 weeks, the rats showed significantly enlarged lateral ventricles compared with the rats receiving sham-only procedure. The sub-concussive rats also presented significant BBB dysfunction in the cerebral cortex and hippocampal formation, whilst neuromotor function assessed by beamwalk and rotarod tests were comparable to the sham rats. Immunofluorescent and spectroscopic microscopy analyses revealed no significant changes in neuroinflammation, oxidative stress, lipid distribution or protein aggregation, within the hippocampus and cortex. These data collectively indicate that repeated sub-concussion for 2 weeks induce significant ventriculomegaly and BBB disruption, preceding neuromotor deficits.


Author(s):  
Jiayuan Dong ◽  
Emily Lawson ◽  
Jack Olsen ◽  
Myounghoon Jeon

Driving agents can provide an effective solution to improve drivers’ trust in and to manage interactions with autonomous vehicles. Research has focused on voice-agents, while few have explored robot-agents or the comparison between the two. The present study tested two variables - voice gender and agent embodiment, using conversational scripts. Twenty participants experienced autonomous driving using the simulator for four agent conditions and filled out subjective questionnaires for their perception of each agent. Results showed that the participants perceived the voice only female agent as more likeable, more comfortable, and more competent than other conditions. Their final preference ranking also favored this agent over the others. Interestingly, eye-tracking data showed that embodied agents did not add more visual distractions than the voice only agents. The results are discussed with the traditional gender stereotype, uncanny valley, and participants’ gender. This study can contribute to the design of in-vehicle agents in the autonomous vehicles and future studies are planned to further identify the underlying mechanisms of user perception on different agents.


Biochar ◽  
2021 ◽  
Author(s):  
Qian Yang ◽  
Yongjie Wang ◽  
Huan Zhong

AbstractThe transformation of mercury (Hg) into the more toxic and bioaccumulative form methylmercury (MeHg) in soils and sediments can lead to the biomagnification of MeHg through the food chain, which poses ecological and health risks. In the last decade, biochar application, an in situ remediation technique, has been shown to be effective in mitigating the risks from Hg in soils and sediments. However, uncertainties associated with biochar use and its underlying mechanisms remain. Here, we summarize recent studies on the effects and advantages of biochar amendment related to Hg biogeochemistry and its bioavailability in soils and sediments and systematically analyze the progress made in understanding the underlying mechanisms responsible for reductions in Hg bioaccumulation. The existing literature indicates (1) that biochar application decreases the mobility of inorganic Hg in soils and sediments and (2) that biochar can reduce the bioavailability of MeHg and its accumulation in crops but has a complex effect on net MeHg production. In this review, two main mechanisms, a direct mechanism (e.g., Hg-biochar binding) and an indirect mechanism (e.g., biochar-impacted sulfur cycling and thus Hg-soil binding), that explain the reduction in Hg bioavailability by biochar amendment based on the interactions among biochar, soil and Hg under redox conditions are highlighted. Furthermore, the existing problems with the use of biochar to treat Hg-contaminated soils and sediments, such as the appropriate dose and the long-term effectiveness of biochar, are discussed. Further research involving laboratory tests and field applications is necessary to obtain a mechanistic understanding of the role of biochar in reducing Hg bioavailability in diverse soil types under varying redox conditions and to develop completely green and sustainable biochar-based functional materials for mitigating Hg-related health risks.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2154
Author(s):  
Amir Hussain Idrisi ◽  
Abdel-Hamid I. Mourad ◽  
Muhammad M. Sherif

This paper presents a long-term experimental investigation of E-glass/epoxy composites’ durability exposed to seawater at different temperatures. The thermoset composite samples were exposed to 23 °C, 45 °C and 65 °C seawater for a prolonged exposure time of 11 years. The mechanical performance as a function of exposure time was evaluated and a strength-based technique was used to assess the durability of the composites. The experimental results revealed that the tensile strength of E-glass/epoxy composite was reduced by 8.2%, 29.7%, and 54.4% after immersion in seawater for 11 years at 23 °C, 45 °C, and 65 °C, respectively. The prolonged immersion in seawater resulted in the plasticization and swelling in the composite. This accelerated the rate of debonding between the fibers and matrix. The failure analysis was conducted to investigate the failure mode of the samples. SEM micrographs illustrated a correlation between the fiber/matrix debonding, potholing, fiber pull-out, river line marks and matrix cracking with deterioration in the tensile characteristics of the thermoset composite.


1990 ◽  
Vol 36 (5) ◽  
pp. 783-788 ◽  
Author(s):  
M N Nanjee ◽  
N E Miller

Abstract The concentration of high-density lipoprotein cholesterol (HDL-C) in plasma is now established as an independent risk factor for coronary heart disease, but more data are needed on the relative risk-predictive powers of different HDL subclasses. For epidemiologic and clinical purposes, isolation of HDL from other lipoproteins and separation of its two major subclasses, HDL2 and HDL3, are performed most conveniently by precipitation. Although storage of plasma is commonly necessary, little information is available on the long-term stability of HDL subclasses at different temperatures. Therefore, we quantified HDL-C, HDL2-C, and HDL3-C by dual precipitation with heparin-MnCl2/15-kDa dextran sulfate (H-M/DS) in samples of EDTA-plasma from 93 healthy subjects, after storage for one to 433 days at -20 degrees C, at -70 degrees C, or in liquid nitrogen (-196 degrees C). Fourteen samples (15%) were stored for a year or longer. At -20 degrees C, HDL-C decreased by 4.8% per year and HDL3-C decreased by 6.9% per year (P = 0.002 for both variables) relative to results obtained with samples stored in liquid nitrogen; total cholesterol, HDL2-C, and triglyceride did not change significantly at this temperature. When stored at -70 degrees C, none of the lipids showed any change relative to results obtained with liquid nitrogen. Thus, long-term storage of EDTA-plasma at -20 degrees C is unsuitable for subsequent quantification of HDL-C and its subclasses by H-M/DS dual precipitation. Storage at -70 degrees C is preferable, and is as reliable as storage in liquid nitrogen.


1993 ◽  
Vol 5 (1) ◽  
pp. 29-38 ◽  
Author(s):  
FA Van Assche

Major progress has been made in the knowledge and management of diabetes and pregnancy. However diabetes in pregnancy remains an important medical complication, with implications for mother and child in both the short and the long term. There are still controversies concerning the diagnostic criteria of gestational diabetes and concerning the best strategry for the treatment of this disorder. There is even less agreement about whether gestational diabetes is a pathological condition. The perinatal mortality in gestational diabetes has recently become as low as that in the general population. This has led to the conclusion that gestational diabetes is no more than a variant of metabolic adaptation during pregnancy. However, fetal hyperinsulinism is present in gestational diabetes, resulting in macrosomia, neonatal complications and most probably long term consequences. Improvements in the care of the preexisting insulin-dependent pregnant diabetic have been achieved but further progress in understanding the underlying mechanisms and in preventing and treating the disease are important goals for the near future.


Sign in / Sign up

Export Citation Format

Share Document