scholarly journals Integration of proteomic and genetic approaches to assess developmental muscle atrophy

Author(s):  
David S. Brooks ◽  
Kumar Vishal ◽  
Simranjot Bawa ◽  
Adrienne Alder ◽  
Erika R. Geisbrecht

Muscle atrophy, or a decline in muscle protein mass, is a significant problem in the aging population and in numerous disease states. Unraveling molecular signals that trigger and promote atrophy may lead to a better understanding of treatment options; however, there is no single cause of atrophy identified to date. To gain insight into this problem, we chose to investigate changes in protein profiles during muscle atrophy in Manduca sexta and Drosophila melanogaster. The use of insect models provides an interesting parallel to probe atrophic mechanisms since these organisms undergo a normal developmental atrophy process during the pupal transition stage. Leveraging the inherent advantages of each model organism, we first defined protein signature changes during Manduca intersegmental muscle (ISM) atrophy and then used genetic approaches to confirm their functional importance in the Drosophila dorsal internal oblique muscles (DIOMs). Our data reveal an upregulation of proteasome and peptidase components and a general downregulation of proteins that regulate actin filament formation. Surprisingly, thick filament proteins that comprise the A band are increased in abundance, providing support for the ordered destruction of myofibrillar components during developmental atrophy. We also uncover the actin filament regulator Ciboulot (Cib) as a novel regulator of muscle atrophy. These insights provide a framework towards a better understanding of global changes that occur during atrophy and may lead to eventual therapeutic targets.

2016 ◽  
Vol 311 (2) ◽  
pp. R365-R373 ◽  
Author(s):  
Yulan Liu ◽  
Xiuying Wang ◽  
Huanting Wu ◽  
Shaokui Chen ◽  
Huiling Zhu ◽  
...  

Pro-inflammatory cytokines play a critical role in the pathophysiology of muscle atrophy. We hypothesized that glycine exerted an anti-inflammatory effect and alleviated lipopolysaccharide (LPS)-induced muscle atrophy in piglets. Pigs were assigned to four treatments including the following: 1) nonchallenged control, 2) LPS-challenged control, 3) LPS+1.0% glycine, and 4) LPS+2.0% glycine. After receiving the control, 1.0 or 2.0% glycine-supplemented diets, piglets were treated with either saline or LPS. At 4 h after treatment with saline or LPS, blood and muscle samples were harvested. We found that 1.0 or 2.0% glycine increased protein/DNA ratio, protein content, and RNA/DNA ratio in gastrocnemius or longissimus dorsi (LD) muscles. Glycine also resulted in decreased mRNA expression of muscle atrophy F-box ( MAFbx) and muscle RING finger 1 ( MuRF1) in gastrocnemius muscle. In addition, glycine restored the phosphorylation of Akt, mammalian target of rapamycin (mTOR), eukaryotic initiation factor 4E binding protein 1 (4E-BP1), and Forkhead Box O 1 (FOXO1) in gastrocnemius or LD muscles. Furthermore, glycine resulted in decreased plasma tumor necrosis factor-α (TNF-α) concentration and muscle TNF-α mRNA abundance. Moreover, glycine resulted in decreased mRNA expresson of Toll-like receptor 4 ( TLR4), nucleotide-binding oligomerization domain protein 2 ( NOD2), and their respective downstream molecules in gastrocnemius or LD muscles. These results indicate glycine enhances muscle protein mass under an inflammatory condition. The beneficial roles of glycine on the muscle are closely associated with maintaining Akt-mTOR-FOXO1 signaling and suppressing the activation of TLR4 and/or NOD2 signaling pathways.


2000 ◽  
Vol 278 (3) ◽  
pp. R705-R711 ◽  
Author(s):  
T. A. McAllister ◽  
J. R. Thompson ◽  
S. E. Samuels

The effect of long-term cold exposure on skeletal and cardiac muscle protein turnover was investigated in young growing animals. Two groups of 36 male 28-day-old rats were maintained at either 5°C (cold) or 25°C (control). Rates of protein synthesis and degradation were measured in vivo on days 5, 10, 15, and 20. Protein mass by day 20 was ∼28% lower in skeletal muscle (gastrocnemius and soleus) and ∼24% higher in heart in cold compared with control rats ( P < 0.05). In skeletal muscle, the fractional rates of protein synthesis ( k syn) and degradation ( k deg) were not significantly different between cold and control rats, although k syn was lower (approximately −26%) in cold rats on day 5; consequent to the lower protein mass, the absolute rates of protein synthesis (approximately −21%; P < 0.05) and degradation (approximately −13%; P < 0.1) were lower in cold compared with control rats. In heart, overall, k syn(approximately +12%; P < 0.1) and k deg(approximately +22%; P < 0.05) were higher in cold compared with control rats; consequently, the absolute rates of synthesis (approximately +44%) and degradation (approximately +54%) were higher in cold compared with control rats ( P < 0.05). Plasma triiodothyronine concentration was higher ( P < 0.05) in cold compared with control rats. These data indicate that long-term cold acclimation in skeletal muscle is associated with the establishment of a new homeostasis in protein turnover with decreased protein mass and normal fractional rates of protein turnover. In heart, unlike skeletal muscle, rates of protein turnover did not appear to immediately return to normal as increased rates of protein turnover were observed beyond day 5. These data also indicate that increased rates of protein turnover in skeletal muscle are unlikely to contribute to increased metabolic heat production during cold acclimation.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 143-143
Author(s):  
Holland C Dougherty ◽  
Hutton Oddy ◽  
Mark Evered ◽  
James W Oltjen

Abstract Target protein mass at maturity is a common “attractor” used in animal models to derive components of animal growth. This target muscle protein at maturity, M*, is used as a driver of a model of animal growth and body composition with pools representing muscle and visceral protein; where viscera is heart, lungs, liver, kidneys, reticulorumen and gastrointestinal tract; and muscle is non-visceral protein. This M* term then drives changes in protein mass and heat production, based on literature data stating that heat production scales linearly with protein mass but not liveweight. This led us to adopt a modelling approach where energy utilization is directly related to protein content of the animal, and energy not lost as heat or deposited as protein is fat. To maintain continuity with existing feeding systems we estimate M* from Standard Reference Weight (SRW) as follows: M* (kJ) = SRW * SHRINK * (1-FMAT) * (MUSC) * (CPM)* 23800. Where SRW is standard reference weight (kg), SHRINK is the ratio of empty body to live weight (0.86), FMAT is proportion of fat in the empty body at maturity (0.30), MUSC is the proportion of empty body protein that is in muscle (0.85), CPM is the crude protein content of fat-free muscle at maturity (0.21), and 23800 is the energetic content (kJ) of a kilogram of crude protein. Values for SHRINK, FMAT, MUSC and CPM were derived from a synthesis of our own experimental data and the literature. For sheep, these values show M* to be: M* (kJ) = SRW * 0.86* (1-0.3) * 0.85 * 0.21 *23800 = SRW * 2557. This method allows for use of existing knowledge regarding standard reference weight and other parameters in estimating target muscle mass at maturity, as part of a model of body composition and performance in ruminants.


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2419 ◽  
Author(s):  
Minson Kweon ◽  
Hyejin Lee ◽  
Cheol Park ◽  
Yung Hyun Choi ◽  
Jae-Ha Ryu

Ashitaba, Angelica keiskei Koidzumi (AK), as a traditional medicine in Korea, Japan, and China, has been known as an elixir of life having therapeutic potential. However, there is no scientific evidence to support that Ashitaba can enhance or maintain muscle strength. To find a new therapeutic agent from the medicinal plant, we evaluated the anti-myopathy effect of chalcones from ethanol extract of AK (EAK) in cellular and animal models of muscle atrophy. To examine anti-myopathy activity, EAK was treated into dexamethasone injected rats and muscle thickness and histopathological images were analyzed. Oral administration of EAK (250 or 500 mg/kg) alleviated muscle atrophic damages and down-regulated the mRNA levels of muscle-specific ubiquitin-E3 ligases. Among ten compounds isolated from EAK, 4-hydroxyderricin was the most effective principle in stimulating myogenesis of C2C12 myoblasts via activation of p38 mitogen-activated protein kinase (MAPK). In three cellular muscle atrophy models with C2C12 myoblasts damaged by dexamethasone or cancer cell-conditioned medium, 4-hydroxyderricin protected the myosin heavy chain (MHC) degradation through suppressing expressions of MAFbx, MuRF-1 and myostatin. These results suggest that the ethanol extract and its active principle, 4-hydroxyderricin from AK, can overcome the muscle atrophy through double mechanisms of decreasing muscle protein degradation and activating myoblast differentiation.


2014 ◽  
Vol 592 (23) ◽  
pp. 5269-5286 ◽  
Author(s):  
Marta L. Fiorotto ◽  
Teresa A. Davis ◽  
Horacio A. Sosa ◽  
Carolina Villegas‐Montoya ◽  
Irma Estrada ◽  
...  

2000 ◽  
Vol 113 (8) ◽  
pp. 1405-1414 ◽  
Author(s):  
P.F. van der Ven ◽  
J.W. Bartsch ◽  
M. Gautel ◽  
H. Jockusch ◽  
D.O. Furst

Titin, also called connectin, is a giant muscle protein that spans the distance from the sarcomeric Z-disc to the M-band. Titin is thought to direct the assembly of sarcomeres and to maintain sarcomeric integrity by interacting with numerous sarcomeric proteins and providing a mechanical linkage. Since severe defects of such an important molecule are likely to result in embryonic lethality, a cell culture model should offer the best practicable tool to probe the cellular functions of titin. The myofibroblast cell line BHK-21/C13 was described to assemble myofibrils in culture. We have now characterized the sub-line BHK-21-Bi, which bears a small deletion within the titin gene. RNA analysis revealed that in this mutant cell line only a small internal portion of the titin mRNA is deleted. However, western blots, immunofluorescence microscopy and immunoprecipitation experiments showed that only the N-terminal, approx. 100 kDa central Z-disc portion of the 3 MDa titin protein is expressed, due to the homozygous deletion in the gene. Most importantly, in BHK-21-Bi cells the formation of thick myosin filaments and the assembly of myofibrils are impaired, although sarcomeric proteins are expressed. Lack of thick filament formation and of ordered actin-myosin arrays was confirmed by electron microscopy. Myogenisation induced by transfection with MyoD yielded myofibrils only in myotubes formed from wild type and not from mutant cells, ruling out that a principal failure in myogenic commitment of the BHK-21-Bi cells might cause the observed effects. These experiments provide the first direct evidence for the crucial role of titin in both thick filament formation as a molecular ruler and in the coordination of myofibrillogenesis.


Author(s):  
M.Yu. KOSTENKO ◽  
G. RYMBALOVICH ◽  
I.N. GORYACHKINA ◽  
R.V. BEZNOSYUK ◽  
G.A. BORISOV

Целью исследований явилась оценкавлияния обработки горячим туманом биологического препарата Азотовит и гуминовых продуктовГумат калия, Экоростсемян ячменя перед посевом, а также сравнение результатов с общепринятымитехнологиями обработки с помощью протравителя семян этими же препаратами. Для полноты исследований обработку производили и химическим препаратом Атик. Высокодисперсный аэрозоль получали с помощью генератора горячего тумана GreenFogBF-130.Обработку производилис помощью устройства с наклонными полками, по которым зерно многократно пересыпалось под действием силы тяжести и подвергалось перемешиванию и воздействию горячего тумана. В результате разницы температур холодного семенного материала и горячего тумана происходил фазовый переход тумана в жидкость, что позволяло получить тонкую плёнку на обрабатываемой поверхности семянячменя.Это способствовало обеззараживанию и активизации физико-химических процессов в зерне. Экспериментальные исследования включали восемь вариантов обработки и один без обработки (контроль). Оценивались результаты продуктивности и структура урожая: число растений на 1 м2, число сорных растений на 1 м2, число продуктивных стеблей (колосьев) на 1 м2, кустистость на 1 м2, продуктивная кустистость на 1 м2,среднее число зерен в колосе, масса 1000 зерен, высота стеблей, биологическая урожайность. В соответствии с ГОСТ 53900-2010 Ячмень кормовой, ГОСТ 5060-86 Ячмень пивоваренный, ГОСТ 28672-90 Ячмень.Требования при заготовках и поставках,ТРТС 021/2011 О безопасности пищевой продукции из качественных показателей рассматривались массовая доля влаги, массовая доля протеина, массовая доля клетчатки, массовая доля сахара, массовая доля жира, массовая доля золы, массовая доля крахмала, обменная энергия, крупность, мелкие зерна, сорная и зерновая примесь, фузариозные зерна, общая токсичность, микотоксиндезоксиниваленол (DON). Лучшие показатели были получены в результате аэрозольной обработки гуминовыми продуктами Гумат калия и Экорост.The aim of the research was to assess the effect of hot mist treatment of the biological preparation Azotovit and humic products potassium HUMATE, barley seeds Ecorost before sowing, as well as to compare the results with conventional technologies of treatment with the help of seed protectant with the same drugs. To complete the research and produce treatment chemicals of Atik. The highly dispersed aerosol was obtained using The greenfogbf-130 hot mist generator. The treatment was carried out using a device with inclined shelves, on which the grain was repeatedly poured under the influence of gravity and was subjected to mixing and the influence of hot fog. As a result of the temperature difference between the cold and hot mist of the seed material, a phase transition of the mist into a liquid occurred, which allowed to obtain a thin film on the treated surface of the barley seeds. This contributed to the disinfection and activation of physical and chemical processes in the grain. Experimental studies included eight treatment options and one without treatment (control). The results of productivity and crop structure were evaluated: the number of plants per 1 m2, the number of weeds per 1 m2, the number of productive stems (ears) per 1 m2, bushiness per 1 m2, productive bushiness per 1 m2, the average number of grains per ear, the weight of 1000 grains, the height of stems, biological yield. In accordance with GOST 53900-2010 barley fodder, barley brewing GOST 5060-86, GOST 28672-90 Barley. Requirements for procurement and supply, TR CU 021/2011 on food safety from qualitative indicators considered the mass fraction of moisture, mass fraction of protein, mass fraction of fiber, mass fraction of sugar, mass fraction of fat, mass fraction of ash, mass fraction of starch, metabolic energy, size, small grains, weed and grain admixture, Fusarium grains, total toxicity, mycotoxindeoxynivalenol (don). The best results were obtained as a result of aerosol treatment with humic products potassium HUMATE and Ecorost.


1981 ◽  
Vol 194 (3) ◽  
pp. 811-819 ◽  
Author(s):  
M L MacDonald ◽  
R W Swick

Rates of growth and protein turnover in the breast muscle of young chicks were measured in order to assess the roles of protein synthesis and degradation in the regulation of muscle mass. Rates of protein synthesis were measured in vivo by injecting a massive dose of L-[1-14C]valine, and rates of protein degradation were estimated as the difference between the synthesis rate and the growth rate of muscle protein. In chicks fed on a control diet for up to 7 weeks of age, the fractional rate of synthesis decreased from 1 to 2 weeks of age and then changed insignificantly from 2 to 7 weeks of age, whereas DNA activity was constant for 1 to 7 weeks. When 4-week-old chicks were fed on a protein-free diet for 17 days, the total amount of breast-muscle protein synthesized and degraded per day and the amount of protein synthesized per unit of DNA decreased. Protein was lost owing to a greater decrease in the rate of protein synthesis, as a result of the loss of RNA and a lowered RNA activity. When depleted chicks were re-fed the control diet, rapid growth was achieved by a doubling of the fractional synthesis rate by 2 days. Initially, this was a result of increased RNA activity; by 5 days, the RNA/DNA ratio also increased. There was no evidence of a decrease in the fractional degradation rate during re-feeding. These results indicate that dietary-protein depletion and repletion cause changes in breast-muscle protein mass primarily through changes in the rate of protein synthesis.


Author(s):  
Anhar Faisal Fanani ◽  
Nyoman Suthama ◽  
Bambang Sukamto

The research was aimed to evaluate feeding effect of powder and extract of dahlia tuber as a sources of inulin prebiotic on proteindigestibility and productivity of crossbred local chicken. A total of 280 unsex local crossbred chicken with the age of 22 days and average weightof 180.46±1.21 g was assigned in a completely randomized design with 7 treatments and 4 replications (10 birds each). Dietary treatmentsconsist of T0 (basal ration), T1 (T0 + 0.4% dahlia powder), T2 (T0 + 0.8% dahlia powder), T3 (T0 + 1.2% dahlia powder), T4 (T0 + 0.39%dahlia extract), T5 (T0 + 0.78% dahlia extract), T6 (T0 + 1.17% extract dahlia). Treatment was conducted for 8 consecutive weeks. Variablesobserved were protein digestibility, short chain fatty acid (SCFA), muscle protein mass, muscle calsium mass, and body weight. The data wereanalyzed using ANOVA and followed by Duncan test at the level of 5%. The results showed that feeding inulin in the form of powder or extract ofdahlia tuber significantly (P<0.05) increased protein digestibility, SCFA level, and body weight. Treatments T2 until T6 significantly (P<0.05)increased muscle calsium mass but did not increase muscle protein mass. In conclusion, the used of 1.2% dahlia powder and 1.17% extractdahlia tuber as an inulin source increase protein digestibility and productivity of crossbred local chicken.Key words: inulin, dahlia tuber, crossbred local chicken


Sign in / Sign up

Export Citation Format

Share Document