scholarly journals The alternative oxidase (AOX) increases sulphide tolerance in the highly invasive marine invertebrate Ciona intestinalis

Author(s):  
Katharina BREMER ◽  
Hitoyoshi YASUO ◽  
Paul Vincent DEBES ◽  
Howard Trevor JACOBS

Ecological communities and biodiversity are shaped by both abiotic and biotic factors. This is well illustrated by extreme environments and invasive species. Besides naturally occurring sulphide-rich environments, global change can lead to an increase in hydrogen sulphide episodes that threaten many multicellular organisms. With the increase in the formation, size, and abundance of oxygen minimum zones and hypoxic environments, bacterial-associated sulphide production is favoured and as such hydrogen sulphide-rich environments increase subsequently. Many species are challenged by the inhibiting effect of sulphide on aerobic energy production via cytochrome c oxidase, ultimately causing the death of the organism. Interestingly, many protist, yeast, plant, and also animal species possess a sulphide-resistant alternative oxidase (AOX). In this study, we investigated whether AOX is functionally involved in the sulphide stress response of the highly invasive marine tunicate, Ciona intestinalis. At the LC50, the sulphide-induced reduction of developmental success was three times stronger in AOX knock-down embryos than in control embryos. Further, AOX mRNA levels were higher under sulphide than control conditions - and this effect increased during embryonic development. Together, we found that AOX is indeed functionally involved in the sulphide tolerance of Ciona embryos, hence, very likely contributing to its invasive potential; and that the response of AOX to sulphide seems to be controlled at the transcriptional level. We suggest that AOX-possessing species play an important role in shaping marine ecological communities, and this importance may increase under ongoing global change.

1993 ◽  
Vol 70 (05) ◽  
pp. 800-806 ◽  
Author(s):  
C Ternisien ◽  
M Ramani ◽  
V Ollivier ◽  
F Khechai ◽  
T Vu ◽  
...  

SummaryTissue factor (TF) is a transmembrane receptor which, in association with factors VII and Vila, activates factor IX and X, thereby activating the coagulation protease cascades. In response to bacterial lipopolysaccharide (LPS) monocytes transcribe, synthesize and express TF on their surface. We investigated whether LPS-induced TF in human monocytes is mediated by protein kinase C (PKC) activation. The PKC agonists phorbol 12- myristate 13-acetate (PMA) and phorbol 12, 13 dibutyrate (PdBu) were both potent inducers of TF in human monocytes, whereas 4 alpha-12, 13 didecanoate (4 a-Pdd) had no such effect. Both LPS- and PMA-induced TF activity were inhibited, in a concentration dependent manner, by three different PKC inhibitors: H7, staurosporine and calphostin C. TF antigen determination confirmed that LPS-induced cell-surface TF protein levels decreased in parallel to TF functional activity under staurosporine treatment. Moreover, Northern blot analysis of total RNA from LPS- or PMA-stimulated monocytes showed a concentration-dependent decrease in TF mRNA levels in response to H7 and staurosporine. The decay rate of LPS-induced TF mRNA evaluated after the arrest of transcription by actinomycin D was not affected by the addition of staurosporine, suggesting that its inhibitory effect occurred at a transcriptional level. We conclude that LPS-induced production of TF and its mRNA by human monocytes are dependent on PKC activation.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1427
Author(s):  
Tiago Barros Afonso ◽  
Lúcia Chaves Simões ◽  
Nelson Lima

Biofilms can be considered the main source of microorganisms in drinking water distribution systems (DWDS). The ecology of a biofilm is dependent on a variety of factors, including the presence of microbial metabolites excreted by its inhabitants. This study reports the effect of the Gram-negative bacteria Methylobacterium oryzae on the idh gene expression levels and patulin production of Penicillium expansum mature biofilms. For this purpose, a RT-qPCR method to quantify idh mRNA levels was applied. In addition, the idh expression levels were compared with the patulin production. The results obtained revealed that the effect of the bacterium on pre-established P. expansum biofilms is dependent on the time of interaction. More mature P. expansum biofilms appear to be more resistant to the inhibitory effect that M. oryzae causes towards idh gene expression and patulin production. A positive trend was observed between the idh expression and patulin production values. The results indicate that M. oryzae affects patulin production by acting at the transcriptional level of the idh gene.


2005 ◽  
Vol 34 (1) ◽  
pp. 177-197 ◽  
Author(s):  
A Cote-Vélez ◽  
L Pérez-Martínez ◽  
M Y Díaz-Gallardo ◽  
C Pérez-Monter ◽  
A Carreón-Rodríguez ◽  
...  

Hypothalamic proTRH mRNA levels are rapidly increased (at 1 h) in vivo by cold exposure or suckling, and in vitro by 8Br-cAMP or glucocorticoids. The aim of this work was to study whether these effects occurred at the transcriptional level. Hypothalamic cells transfected with rat TRH promoter (− 776/+85) linked to the luciferase reporter showed increased transcription by protein kinase (PK) A and PKC activators, or by dexamethasone (dex), but co-incubation with dex and 8Br-cAMP decreased their stimulatory effect (as observed for proTRH mRNA levels). These effects were also observed in NIH-3T3-transfected cells supporting a characteristic of TRH promoter and not of hypothalamic cells. Transcriptional regulation by 8Br-cAMP was mimicked by noradrenaline which increased proTRH mRNA levels, but not in the presence of dex. PKA inhibition by H89 avoided 8Br-cAMP or noradrenaline stimulation. TRH promoter sequences, cAMP response element (CRE)-like (− 101/− 94 and − 59/− 52) and glucocorticoid response element (GRE) half-site (− 210/− 205), were analyzed by electrophoretic mobility shift assays with nuclear extracts from hypothalamic or neuroblastoma cultures. PKA stimulation increased binding to CRE (− 101/− 94) but not to CRE (− 59/− 52); dex or 12-O-tetradecanoylphorbol-13-acetate (TPA) increased binding to GRE, a composite site flanked by a perfect and an imperfect activator protein (AP-1) site in the complementary strand. Interference was observed in the binding of CRE or GRE with nuclear extracts from cells co-incubated for 3 h with 8Br-cAMP and dex; from cells incubated for 1 h, only the binding to GRE showed interference. Rapid cross-talk of glucocorticoids with PKA signaling pathways regulating TRH transcription constitutes another example of neuroendocrine integration.


2004 ◽  
Vol 377 (3) ◽  
pp. 545-552 ◽  
Author(s):  
Shubha MURTHY ◽  
Ella BORN ◽  
Satya N. MATHUR ◽  
F. Jeffrey FIELD

The effect of fatty acids on LXR (liver X receptors)-mediated enhancement of ABCA1 (ATP-binding cassette transporter A1) expression and cholesterol efflux was investigated in human intestinal cells CaCo-2. LXR activation by T0901317 increased basolateral cholesterol efflux to lipoprotein particles isolated at a density of 1.21 g/ml or higher. Oleic and arachidonic acids attenuated the amount of cholesterol isolated from these particles. Stearic, linoleic and docosahexaenoic acids also decreased cholesterol efflux from basolateral membranes, with the polyunsaturated fatty acids being the most potent. Although oleic, arachidonic and docosahexaenoic acids modestly decreased ABCA1 mRNA levels in response to LXR activation, stearic and linoleic acids did not. Except for oleic acid, all fatty acids substantially attenuated an increase in ABCA1 mass secondary to LXR activation. Inhibiting acyl-CoA:cholesterol acyltransferase activity prevented the decrease in cholesterol efflux caused by oleic acid. Thus, in response to LXR activation, all fatty acids decreased the efflux of cholesterol from the basolateral membrane of CaCo-2 cells. Although modest suppression of ABCA1 gene expression by oleic, arachidonic and docosahexaenoic acids cannot be completely excluded as a mechanism, the predominant effect of fatty acids on ABCA1 expression and cholesterol efflux is at a post-transcriptional level.


Genetics ◽  
1996 ◽  
Vol 142 (1) ◽  
pp. 129-140 ◽  
Author(s):  
Qiuhong Li ◽  
R Gary Ritzel ◽  
Lesley L T McLean ◽  
Lee McIntosh ◽  
Tak Ko ◽  
...  

Mitochondria of Neurospora crassa contain a cyanide-resistant alternative respiratory pathway in addition to the cytochrome pathway. The alternative oxidase is present only when electron flow through the cytochrome chain is restricted. Both genomic and cDNA copies for the alternative oxidase gene have been isolated and analyzed. The sequence of the predicted protein is homologous to that of other species. The mRNA for the alternative oxidase is scarce in wild-type cultures grown under normal conditions, but it is abundant in cultures grown in the presence of chloramphenicol, an inhibitor of mitochondrial protein synthesis, or in mutants deficient in mitochondrial cytochromes. Thus, induction of alternative oxidase appears to be at the transcriptional level. Restriction fragment length polymorphism mapping of the isolated gene demonstrated that it is located in a position corresponding to the aod-1 locus. Sequence analysis of mutant aod-1 alleles reveals mutations affecting the coding sequence of the alternative oxidase. The level of aod-1 mRNA in an aod-2 mutant strain that had been grown in the presence of chloramphenicol was reduced several fold relative to wild-type, supporting the hypothesis that the product of aod-2 is required for optimal expression of aod-1.


2020 ◽  
Vol 319 (1) ◽  
pp. L21-L34
Author(s):  
Ying Zhong ◽  
Kristina Bry ◽  
Jesse D. Roberts

Cyclic guanosine monophosphate (cGMP) signaling is an important regulator of newborn lung function and development. Although cGMP signaling is decreased in many models of newborn lung injury, the mechanisms are poorly understood. We determined how IL-1β regulates the expression of the α1-subunit of soluble guanylate cyclase (sGCα1), a prime effector of pulmonary cGMP signaling. Physiologic levels of IL-1β were discovered to rapidly decrease sGCα1 mRNA expression in a human fetal lung fibroblast cell line (IMR-90 cells) and protein levels in primary mouse pup lung fibroblasts. This sGCα1 expression inhibition appeared to be at a transcriptional level; IL-1β treatment did not alter sGCα1 mRNA stability, although it reduced sGCα1 promoter activity. Transforming growth factor-β (TGFβ)-activated kinase-1 (TAK1) was determined to be required for IL-1β’s regulation of sGCα1 expression; TAK1 knockdown protected sGCα1 mRNA expression in IL-1β-treated IMR-90 cells. Moreover, heterologously expressed TAK1 was sufficient to decrease sGCα1 mRNA levels in those cells. Nuclear factor-κB (NF-κB) signaling played a critical role in the IL-1β-TAK1-sGCα1 regulatory pathway; chromatin immunoprecipitation studies demonstrated enhanced activated NF-κB subunit (RelA) binding to the sGCα1 promoter after IL-1β treatment unless treated with an IκB kinase-2 inhibitor. Also, this NF-κB signaling inhibition protected sGCα1 expression in IL-1β-treated fibroblasts. Lastly, using transgenic mice in which active IL-1β was conditionally expressed in lung epithelial cells, we established that IL-1β expression is sufficient to stimulate TAK1 and decrease sGCα1 protein expression in the newborn lung. Together these results detail the role and mechanisms by which IL-1β inhibits cGMP signaling in the newborn lung.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Yabin Liu ◽  
Binghui Li ◽  
Lili Wang ◽  
Dexian Kong

Objective. To investigate whether the polymorphisms of interleukin-12B (IL-12B) were associated with the risk of developing colorectal cancer (CRC). Patients and Methods. Genotypes of rs17860508 and rs3212227 were determined by polymerase chain reaction with a direct sequencing method in 329 CRC patients and 342 matched healthy control subjects. The expression of IL-12B mRNA was determined by RT-qPCR in 50 pairs of CRC tissues and their adjacent normal tissues. Results. Compared with TTAGAG/TTAGAG genotype of rs17860508, the GC/GC and TTAGAG/GC genotypes may significantly increase the risk of CRC (OR = 1.81, 95% CI = 1.18–2.78; OR = 1.46, 95% CI = 1.01–2.12, respectively). Furthermore, the mRNA levels of IL-12B were significantly higher in the CRC tissues from patients with the rs17860508 GC/GC genotype than those with the TTAGAG/GC (P=0.009) and TTAGAG/TTAGAG (P=0.001) genotypes. Conclusion. These data suggested that the rs17860508 GC/GC genotype might upregulate IL-12B expression at the transcriptional level and thus increase the risk of CRC.


2004 ◽  
Vol 377 (3) ◽  
pp. 701-708 ◽  
Author(s):  
Christophe MARIETTE ◽  
Michaël PERRAIS ◽  
Emmanuelle LETEURTRE ◽  
Nicolas JONCKHEERE ◽  
Brigitte HÉMON ◽  
...  

Abnormal gastro-oesophageal reflux and bile acids have been linked to the presence of Barrett's oesophageal premalignant lesion associated with an increase in mucin-producing goblet cells and MUC4 mucin gene overexpression. However, the molecular mechanisms underlying the regulation of MUC4 by bile acids are unknown. Since total bile is a complex mixture, we undertook to identify which bile acids are responsible for MUC4 up-regulation by using a wide panel of bile acids and their conjugates. MUC4 apomucin expression was studied by immunohistochemistry both in patient biopsies and OE33 oesophageal cancer cell line. MUC4 mRNA levels and promoter regulation were studied by reverse transcriptase–PCR and transient transfection assays respectively. We show that among the bile acids tested, taurocholic, taurodeoxycholic, taurochenodeoxycholic and glycocholic acids and sodium glycocholate are strong activators of MUC4 expression and that this regulation occurs at the transcriptional level. By using specific pharmacological inhibitors of mitogen-activated protein kinase, phosphatidylinositol 3-kinase, protein kinase A and protein kinase C, we demonstrate that bile acid-mediated up-regulation of MUC4 is promoter-specific and mainly involves activation of phosphatidylinositol 3-kinase. This new mechanism of regulation of MUC4 mucin gene points out an important role for bile acids as key molecules in targeting MUC4 overexpression in early stages of oesophageal carcinogenesis.


2009 ◽  
Vol 9 (5) ◽  
pp. 449-460 ◽  
Author(s):  
Daniel J.M. Fernandez-Ayala ◽  
Alberto Sanz ◽  
Suvi Vartiainen ◽  
Kia K. Kemppainen ◽  
Marek Babusiak ◽  
...  

1996 ◽  
Vol 315 (2) ◽  
pp. 555-562 ◽  
Author(s):  
Fatima DJOUADI ◽  
Jean BASTIN ◽  
Daniel P. KELLY ◽  
Claudie MERLET-BENICHOU

Mitochondrial fatty acid β-oxidation plays a major role in providing the ATP required for reabsorptive processes in the adult rat kidney. However, the molecular mechanisms and signals involved in induction of the enzymes of fatty acid oxidation during development in this and other organs are unknown. We therefore studied the changes in the steady-state levels of mRNA encoding medium-chain acyl-CoA dehydrogenase (MCAD), which catalyses the initial step in mitochondrial fatty acid β-oxidation, in the rat kidney cortex and medulla between postnatal days 10 and 30. Furthermore, we investigated whether the expression of MCAD and of mitochondrial malate dehydrogenase (mMDH), a key enzyme in the tricarboxylic acid cycle, might be co-ordinately regulated by circulating glucocorticoids in the immature kidney during development. In the cortex, the levels of MCAD mRNA rose 4-fold between day 10 and day 21, and then decreased from day 21 to day 30. In the medulla a postnatal increase in the concentration of MCAD mRNA (8-fold) was observed during the same period. Adrenalectomy prevented the 16–21-day developmental increases in MCAD and mMDH mRNA levels in the cortex and medulla; these could be restored by dexamethasone treatment. A single injection of dexamethasone into 10-day-old rats led to a rise in MCAD and mMDH mRNA levels in the renal cortex due to stimulation of gene transcription, as shown by nuclear run-on assays. Therefore MCAD and mMDH gene expression is tightly regulated at the transcriptional level by developmental changes in circulating glucocorticoid levels. These hormones might thus represent a good candidate as a co-ordinating factor in the expression of nuclear genes encoding mitochondrial enzymes in the kidney during postnatal development.


Sign in / Sign up

Export Citation Format

Share Document