Paper 21: Variations in Friction and Wear between Unlubricated Steel Surfaces

Author(s):  
S. W. E. Earles ◽  
D. G. Powell

Experiments have been conducted in a normal atmosphere using a 0·25-in diameter mild-steel pin specimen sliding on a 10-in diameter mild-steel disc. The ranges of normal force and speed are 0·5–10·4 lbf and 20–190 ft/s respectively. Initially the coefficient of friction is comparatively large, and the wear is of the severe metallic form. However, frictional heating causes rapid oxidation of the surfaces and, if the sliding distance is sufficient, the eventual retention of an oxide layer causes a rapid decrease in the coefficient of friction and the wear rate decreases by 3–4 orders of magnitude. At speeds above about 75 ft/s and loads below about 5 lbf the formation, after several hours' sliding, of a continuous oxide layer on the track causes a further reduction in the pin wear rate. At higher loads and/or lower speeds this track condition is not attained. At speeds of 75 ft/s and above there exists a critical load (the magnitude of which depends on speed) above which periodic removals of the surface film(s) occur producing metallic wear and high friction. However, the subsequent increase in oxidation allows conditions of mild wear to be re-established generally within a few seconds. The steady-state coefficient of friction has been observed to be a function of load1/2 × speed, and periodic surface breakdowns found to occur when load1/2 × speed exceeds 170 lbf1/2 ft/s, the frequency decreasing with increasing load or speed.

Author(s):  
M. J. Kadhim ◽  
S. W. E. Earles

Experiments are described in which stationary copper specimens are rubbed in a normal atmosphere against a rotating S62 steel disc under normal loads up to 4·5 lbf. The coefficient of friction is measured at sliding speeds of 93, 220, 328, and 490 ft/s using ⅛-in diameter specimens. Except at the lowest speed a gradual buildup of a continuous copper oxide layer on the disc track is observed with increasing normal load together with a corresponding decrease in the coefficient of friction. Having established an oxide layer on the track the coefficient of friction observed is low for all normal loads. The coefficient of friction is shown to decrease with normal load N and sliding speed U, to be a function of N1/2 U, and to depend on the state of the disc surface. Wear of -in diameter specimens is measured by weighing before and after a test. The wear rate is shown to decrease with sliding speed and increase with load, and for speeds of 220 and 328 ft/s to be a function of N/U. The wear rates measured at 93 ft/s are the same function of N/U for low values of N/U.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4217
Author(s):  
Üsame Ali Usca ◽  
Mahir Uzun ◽  
Mustafa Kuntoğlu ◽  
Serhat Şap ◽  
Khaled Giasin ◽  
...  

Tribological properties of engineering components are a key issue due to their effect on the operational performance factors such as wear, surface characteristics, service life and in situ behavior. Thus, for better component quality, process parameters have major importance, especially for metal matrix composites (MMCs), which are a special class of materials used in a wide range of engineering applications including but not limited to structural, automotive and aeronautics. This paper deals with the tribological behavior of Cu-B-CrC composites (Cu-main matrix, B-CrC-reinforcement by 0, 2.5, 5 and 7.5 wt.%). The tribological characteristics investigated in this study are the coefficient of friction, wear rate and weight loss. For this purpose, four levels of sliding distance (1000, 1500, 2000 and 2500 m) and four levels of applied load (10, 15, 20 and 25 N) were used. In addition, two levels of sliding velocity (1 and 1.5 m/s), two levels of sintering time (1 and 2 h) and two sintering temperatures (1000 and 1050 °C) were used. Taguchi’s L16 orthogonal array was used to statistically analyze the aforementioned input parameters and to determine their best levels which give the desired values for the analyzed tribological characteristics. The results were analyzed by statistical analysis, optimization and 3D surface plots. Accordingly, it was determined that the most effective factor for wear rate, weight loss and friction coefficients is the contribution rate. According to signal-to-noise ratios, optimum solutions can be sorted as: the highest levels of parameters except for applied load and reinforcement ratio (2500 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 0 wt.%) for wear rate, certain levels of all parameters (1000 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 2.5 wt.%) for weight loss and 1000 m, 15 N, 1 m/s, 1 h, 1000 °C and 0 wt.% for the coefficient of friction. The comprehensive analysis of findings has practical significance and provides valuable information for a composite material from the production phase to the actual working conditions.


2003 ◽  
Vol 125 (3) ◽  
pp. 661-669 ◽  
Author(s):  
Masaya Kurokawa ◽  
Yoshitaka Uchiyama ◽  
Tomoaki Iwai ◽  
Susumu Nagai

Tribological properties of several kinds of polyoxymethylene (POM) composites were evaluated for the purpose of developing a polymeric tribomaterial especially suited for mating with aluminum parts having low surface hardness. POM composites containing small amounts of silicon carbide (SiC), POM/SiC; those containing a small amount of calcium octacosanonoate besides SiC, POM/SiC/Ca-OCA; and the one blended with 24 wt % of polytetrafluoroethylene, POM/PTFE(24); were injection-molded into pin specimens and their tribological properties were tested by means of a pin-on-disk type wear apparatus using an aluminum (A5056) mating disk in comparison with a 303 stainless steel (SUS303) disk. Evaluation was focused on observation of the sliding surfaces of the pin specimens and the mating disks by a scanning electron microscope and an optical microscope together with the measurement of surface roughness. In the case of mating against a SUS303 disk having high surface hardness, all pin specimens did not roughen the disk surfaces even after long time of rubbing. Only POM/PTFE(24) composite obviously made a transfer film on the disk surface, while the other composites made an extremely thin one on it. POM/SiC(0.1)/Ca-OCA(1) composite, containing SiC 0.1 wt. % and Ca-OCA 1 wt. %, was found to show the lowest coefficient of friction and the lowest wear rate forming extremely thin transfer film on the mating disk. On the other hand, against an A5056 disk which has lower surface hardness than that of SUS303 disk, unfilled POM and POM composites except POM/SiC(0.1)/Ca-OCA(1) composite roughened the disk surfaces. However, the sliding surface of the A5056 disk rubbed with POM/SiC(0.1)/Ca-OCA(1) composite was significantly smoother and that of the pin specimen was also quite smooth in comparison with other pin specimens. Further, when each POM composite was rubbed against the A5056 disk, formation of transfer film was not obvious on the disk surfaces. For POM/SiC(0.1)/Ca-OCA(1) composite, the wear rate was the lowest of all POM composites, and the coefficient of friction was as low level as 60 percent of that of unfilled POM, but slightly higher than that of POM/PTFE(24) composite. For POM/SiC(0.1)/Ca-OCA(1) composite, the nucleating effect of SiC and Ca-OCA, which accelerated the crystallization of POM during its injection molding to form a matrix containing fine spherulites, must have resulted in increasing the toughness of the matrix and lowering the wear rate. Also, the lubricant effect of Ca-OCA should have lowered the coefficient of friction of the same matrix for rubbing against aluminum mating disk. POM/SiC(0.1)/Ca-OCA(1) composite was concluded as an excellent tribomaterial for mating with aluminum parts.


1999 ◽  
Vol 122 (4) ◽  
pp. 849-855 ◽  
Author(s):  
Kwangjin Lee

Thermoelastic instability in automotive drum brake systems is investigated using a finite layer model with one-sided frictional heating. With realistic material properties of automotive brakes, the stability behavior of the one-sided heating mode is similar to that of the antisymmetric mode of two-sided heating but the critical speed of the former is higher than that of the latter. The effects of the friction coefficient and brake material properties on the critical speeds are examined and the most influential properties are found to be the coefficient of friction and the thermal expansion coefficient of drum materials. Vehicle tests were performed to observe the critical speeds of the drum brake systems with aluminum drum materials. Direct comparisons are made between the calculation and measurement for the critical speed and hot spot spacing. Good agreement is achieved when the critical speeds are calculated using the temperature-dependent friction material properties and the reduced coefficient of friction to account for the effect of intermittent contact. [S0742-4787(00)01503-4]


2017 ◽  
Vol 25 (3) ◽  
pp. 193-198 ◽  
Author(s):  
A. Madhanagopal ◽  
S. Gopalakannan

This study determines the friction and the wear properties of the unidirectional glass epoxy composite with Gr, SiC TiO2 powder by using pin on disk apparatus. This tribological data is obtained in dry sliding condition for a constant sliding time of 30 minutes. Test specimens are prepared using hand lay-up process and by varying the different (2, 5, 7) percentage each of graphite and SiC, TiO2 particles addition for the combination of fiber and matrix. The tests are performed by varying the operating parameters of contact pressure (p) and velocity (v). The composites (2% 5%, and 7%) are worn by dry sliding at the steel counter face under ambient conditions. The coefficient of friction reaches maximum of 0.78 at 2 kg load, 2 m/s velocity with testing time duration of 24 min. whereas 5%, 7% sample shows the coefficient of friction 0.28, 0.25 respectively. The specific wear rate value drops to 0.79 (mm3/N-m×10−6) at 2 kg load at 2 m/s velocity for the 5% specimen. The maximum reduction in the specific wear rate at 3 kg load, 1m/s velocity is 32.7 percentages, 5.63 percentages for the 5,7 percentage specimen compared to 2% specimen for the graphite and SiC, TiO2 particle filled composite specimen respectively. The SEM images are also taken to support the results.


2012 ◽  
Vol 58 (No. 3) ◽  
pp. 114-117
Author(s):  
C.F.H. Bishop ◽  
A.F.J. Gash ◽  
C. Heslim ◽  
S. Hanney

The dynamic coefficient of friction of single potatoes was determined on mild steel, rubber and plastic, for tubers in each of four conditions: dry and dirty, wet and dirty, clean and wet and clean and dry. Steel had the lowest overall mean coefficient of friction. The highest value was recorded for plastic, but this material also had the largest coefficient of variation. Overall, rubber was considered to be the most suitable all-condition material for tubers in a range of conditions.


2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Aiman Y ◽  
Syahrullail S. ◽  
S. M. Azhar ◽  
Ummikalsom A. ◽  
Kameil A. H.

Palm stearin has high biodegradability and produces low pollution to the environment. This oil can be improved based on its natural behaviour and can be an alternative to replace the widely used commercial mineral oils. Thus, the negative impact towards the environment can be reduced. This research is to study the performance of two type lubricants which is vegetable oil (Palm Stearin) and commercial mineral engine oil (CMEO). The sample will be tested using pin on disc tribotester machine that follows ASTM G99 standard. The materials used for this experiment are pure aluminium pin (A110) with spherical head and stainless steel disc (SKD11) with four grooves. The experiment will take one hour to finish one test. The conditions that were considered before the beginning of the experiment are constant loads of 1kg, varies sliding speed of 1.5 m/s to 3.5 m/s with incremental 1 m/s and 2.5 ml volume of oil. The wear rate and coefficient of friction can be determined in this experiment. From the result obtained, the coefficient of friction (COF) of palm stearin is 45% higher than CMEO and also the trend for both oils are inversely proportional with sliding speed. Besides that, the wear rate of palm stearin is also bigger than CMEO, which shows that CMEO has better lubrication performance when compared to palm stearin. The additives is needed for palm stearin so that the lubrication performance can compete with the CMEO. From the result also, vegetable oil shows a potential to be a commercial lubricant when the deficiencies can be overcome.


2020 ◽  
Vol 72 (9) ◽  
pp. 1109-1116
Author(s):  
Crislaine da Cruz ◽  
Ivan Mathias ◽  
Mariza Veiga Senk ◽  
Gelson Biscaia de Souza ◽  
Francisco Carlos Serbena

Purpose Lithium disilicate glass-ceramics (LS2 GC) are widely used as dental prosthetics and dental restorations. Based LS2 GC have hardness and translucency similar to that of natural teeth. This study aims to investigate the tribological features of LS2 GC with crystalline volume fraction of 64% and different crystal sizes from 8 µm to 34 µm for different counterparts. Design/methodology/approach The tribological behavior was investigated using a pin-on-disc tribometer with alumina and tungsten carbide (WC) spheres, applied load of 5 N and sliding speed of 5 cm/s at normal conditions. The coefficient of friction was measured continuously up to 10,000 sliding cycles. The specific wear rate was calculated from tribological and profile measurements. The wear mechanism was investigated by surface morphology analysis. Findings The coefficient of friction during running-in varied from 0.8 to 1.0 for the alumina counterpart, because of severe wear. Afterwards, it reduced and reached a stationary regime, characterized by a mild wear regime and the formation of a tribolayer formed by the debris. For the WC counterpart, the coefficient of friction curves increased initially with sliding cycles up to a stationary regime. The samples tested against WC presented the lowest specific wear rate (k), and no variation of wear rate with crystal size was observed. For samples tested against the alumina, crystallization and crystal size increased the wear resistance. Originality/value This study evaluated the effect of different counterfaces on the tribological properties of the LS2 GC, an important glass-ceramic base for many dental prosthetics and dental restorations, discussing results in light of the contact mechanics. Different specific wear rates, wear regimes and dependence on the glass-ceramic microstructure were observed depending on the counterpart. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2019-0352/


2001 ◽  
Vol 16 (12) ◽  
pp. 3567-3574 ◽  
Author(s):  
Xiaoling Zhang ◽  
W. Lauwerens ◽  
L. Stals ◽  
Jiawen He ◽  
J-P. Celis

The fretting wear of sulphur-deficient MoSx coatings with different crystallographic orientations has been investigated in ambient air of controlled relative humidity. The coefficient of friction and the wear rate of MoSx coatings sliding against corundum depend not only on fretting parameters like contact stress, fretting frequency, and relative humidity, but also strongly on the crystallographic orientation of the coatings. For randomly oriented MoSx coatings, the coefficient of friction and the wear rate increased significantly with increasing relative humidity. In contrast, basal-oriented MoSx coatings were less sensitive to relative humidity. The coefficient of friction of both types of MoSx coatings decreased on sliding against corundum with increasing contact stress and decreasing fretting frequency. A correlation between dissipated energy and wear volume is proposed. This approach allows detection in a simple way of differences in fretting wear resistance between random- and basal-oriented MoSx coatings tested in ambient air of different relative humidity.


Author(s):  
Kali Dass ◽  
SR Chauhan ◽  
Bharti Gaur

An experimental study has been carried out to investigate the mechanical and tribological characteristics of chopped carbon fiber (CCF) reinforced epoxy composites filled with nano-Al2O3 particulates, as a function of fiber and filler contents. The experiments were conducted using a pin-on-disc wear test apparatus under dry sliding conditions. The coefficient of friction and specific wear rate of these composites was determined as a function of applied normal load, sliding velocity, sliding distance, and reinforcement content. The tensile, flexural, and compression strengths of ortho cresol novalac epoxy and chopped carbon fiber (OCNE/CCF) filled composites are found to be within the ranges of 48–58.54 MPa, 115–156.56 MPa, and 48–61.15 MPa. Whereas the tensile, flexural, and compression strengths of OCNE/CCF/Al2O3-filled composites are found to be within the ranges of 96–110 MPa, 176–204.66 MPa, and 72–85.65 MPa, respectively. It has been observed that the coefficient of friction decreases and specific wear rate increases with increase in the applied normal loads. Further increases in the fiber (6 wt%) and particle (3 wt%) contents in the epoxy matrix resulted in a decrease of both the mechanical and tribological properties, but remains above that of the CCF reinforced epoxy composites. The worn surfaces of composites were examined with scanning electron microscopy equipped with energy dispersion X-ray analyzer and X-ray diffraction analysis technique to investigate the wear mechanisms.


Sign in / Sign up

Export Citation Format

Share Document