scholarly journals Senescence in the aging process

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1219 ◽  
Author(s):  
Richard GA Faragher ◽  
Anne McArdle ◽  
Alison Willows ◽  
Elizabeth L. Ostler

The accumulation of ‘senescent’ cells has long been proposed to act as an ageing mechanism. These cells display a radically altered transcriptome and degenerative phenotype compared with their growing counterparts. Tremendous progress has been made in recent years both in understanding the molecular mechanisms controlling entry into the senescent state and in the direct demonstration that senescent cells act as causal agents of mammalian ageing. The challenges now are to gain a better understanding of how the senescent cell phenotype varies between different individuals and tissues, discover how senescence predisposes to organismal frailty, and develop mechanisms by which the deleterious effects of senescent cells can be ameliorated.

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 375
Author(s):  
Inês C. Brás ◽  
Tiago F. Outeiro

The accumulation of misfolded alpha-synuclein (aSyn) throughout the brain, as Lewy pathology, is a phenomenon central to Parkinson’s disease (PD) pathogenesis. The stereotypical distribution and evolution of the pathology during disease is often attributed to the cell-to-cell transmission of aSyn between interconnected brain regions. The spreading of conformationally distinct aSyn protein assemblies, commonly referred as strains, is thought to result in a variety of clinically and pathologically heterogenous diseases known as synucleinopathies. Although tremendous progress has been made in the field, the mechanisms involved in the transfer of these assemblies between interconnected neural networks and their role in driving PD progression are still unclear. Here, we present an update of the relevant discoveries supporting or challenging the prion-like spreading hypothesis. We also discuss the importance of aSyn strains in pathology progression and the various putative molecular mechanisms involved in cell-to-cell protein release. Understanding the pathways underlying aSyn propagation will contribute to determining the etiology of PD and related synucleinopathies but also assist in the development of new therapeutic strategies.


2008 ◽  
Vol 30 (5) ◽  
pp. 4-7 ◽  
Author(s):  
Richard G.A. Faragher

The accumulation of ‘senescent’ cells has long been proposed to act as an aging mechanism. Senescent cells display a radically altered transcriptome compared to their growing counterparts and thus have a profoundly altered and degenerative phenotype. Tremendous progress has been made in recent years in understanding the molecular pathways underlying entry into the senescent state, but attempts to determine whether senescent cells can act as causal agents of mammalian aging have been limited. However, exciting new improvements in senescent cell detection render the area ripe for detailed experimental investigation.


2020 ◽  
Vol 27 (7) ◽  
pp. 1041-1051 ◽  
Author(s):  
Michael Spartalis ◽  
Eleftherios Spartalis ◽  
Antonios Athanasiou ◽  
Stavroula A. Paschou ◽  
Christos Kontogiannis ◽  
...  

Atherosclerotic disease is still one of the leading causes of mortality. Atherosclerosis is a complex progressive and systematic artery disease that involves the intima of the large and middle artery vessels. The inflammation has a key role in the pathophysiological process of the disease and the infiltration of the intima from monocytes, macrophages and T-lymphocytes combined with endothelial dysfunction and accumulated oxidized low-density lipoprotein (LDL) are the main findings of atherogenesis. The development of atherosclerosis involves multiple genetic and environmental factors. Although a large number of genes, genetic polymorphisms, and susceptible loci have been identified in chromosomal regions associated with atherosclerosis, it is the epigenetic process that regulates the chromosomal organization and genetic expression that plays a critical role in the pathogenesis of atherosclerosis. Despite the positive progress made in understanding the pathogenesis of atherosclerosis, the knowledge about the disease remains scarce.


Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 485
Author(s):  
Lorenzo Cuollo ◽  
Fabrizio Antonangeli ◽  
Angela Santoni ◽  
Alessandra Soriani

Cellular senescence represents a robust tumor-protecting mechanism that halts the proliferation of stressed or premalignant cells. However, this state of stable proliferative arrest is accompanied by the Senescence-Associated Secretory Phenotype (SASP), which entails the copious secretion of proinflammatory signals in the tissue microenvironment and contributes to age-related conditions, including, paradoxically, cancer. Novel therapeutic strategies aim at eliminating senescent cells with the use of senolytics or abolishing the SASP without killing the senescent cell with the use of the so-called “senomorphics”. In addition, recent works demonstrate the possibility of modifying the composition of the secretome by genetic or pharmacological intervention. The purpose is not to renounce the potent immunostimulatory nature of SASP, but rather learning to modulate it for combating cancer and other age-related diseases. This review describes the main molecular mechanisms regulating the SASP and reports the evidence of the feasibility of abrogating or modulating the SASP, discussing the possible implications of both strategies.


Author(s):  
Anna Sobiepanek ◽  
Alessio Paone ◽  
Francesca Cutruzzolà ◽  
Tomasz Kobiela

AbstractMelanoma is the most fatal form of skin cancer, with increasing prevalence worldwide. The most common melanoma genetic driver is mutation of the proto-oncogene serine/threonine kinase BRAF; thus, the inhibition of its MAP kinase pathway by specific inhibitors is a commonly applied therapy. However, many patients are resistant, or develop resistance to this type of monotherapy, and therefore combined therapies which target other signaling pathways through various molecular mechanisms are required. A possible strategy may involve targeting cellular energy metabolism, which has been recognized as crucial for cancer development and progression and which connects through glycolysis to cell surface glycan biosynthetic pathways. Protein glycosylation is a hallmark of more than 50% of the human proteome and it has been recognized that altered glycosylation occurs during the metastatic progression of melanoma cells which, in turn facilitates their migration. This review provides a description of recent advances in the search for factors able to remodel cell metabolism between glycolysis and oxidative phosphorylation, and of changes in specific markers and in the biophysical properties of cells during melanoma development from a nevus to metastasis. This development is accompanied by changes in the expression of surface glycans, with corresponding changes in ligand-receptor affinity, giving rise to structural features and viscoelastic parameters particularly well suited to study by label-free biophysical methods.


2021 ◽  
Vol 22 (12) ◽  
pp. 6385
Author(s):  
Maya A. Dymova ◽  
Elena V. Kuligina ◽  
Vladimir A. Richter

Glioblastoma multiforme (GBM) is the most common and fatal primary brain tumor, is highly resistant to conventional radiation and chemotherapy, and is not amenable to effective surgical resection. The present review summarizes recent advances in our understanding of the molecular mechanisms of therapeutic resistance of GBM to already known drugs, the molecular characteristics of glioblastoma cells, and the barriers in the brain that underlie drug resistance. We also discuss the progress that has been made in the development of new targeted drugs for glioblastoma, as well as advances in drug delivery across the blood–brain barrier (BBB) and blood–brain tumor barrier (BBTB).


1995 ◽  
Vol 347 (1319) ◽  
pp. 21-25 ◽  

Over the past three or four years, great strides have been made in our understanding of the proteins involved in recombination and the mechanisms by which recombinant molecules are formed. This review summarizes our current understanding of the process by focusing on recent studies of proteins involved in the later steps of recombination in bacteria. In particular, biochemical investigation of the in vitro properties of the E. coli RuvA, RuvB and RuvC proteins have provided our first insight into the novel molecular mechanisms by which Holliday junctions are moved along DNA and then resolved by endonucleolytic cleavage.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Mengxue Zhang ◽  
Bowen Wang ◽  
Craig Kent ◽  
Lian-Wang Guo

Introduction: Intimal hyperplasia (IH) occurs primarily due to vascular smooth muscle cell (SMC) transformation from quiescent to pathogenic phenotypes (e.g. proliferation and inflammation). Identification and effective targeting of key epigenetic factors governing SMC pathogenic transformation may lead to novel therapeutic methods for prevention of IH. We previously found that globally blocking the bromo- and extra-terminal (BET) epigenetic “reader” family abrogated SMC phenotype transformation and IH. We further investigated the functions of the two BET bromodomains (Bromo1 and Bromo2). Hypothesis: Bromo1 and Bromo2 play different roles in SMC pathogenic transformation. Methods and Results: We pre-treated rat primary aortic SMCs (for 2h) with Olinone or RVX208, inhibitors specific for Bromo1 and Bromo2 respectively, and then stimulated SMC phenotype transformation. Whereas RVX208 abrogated PDGF-BB-stimulated SMC proliferation (BrdU assay) in a dose dependent manner, Olinone enhanced SMC proliferation at high concentrations (>20 μM). RVX208 at 50 μM reduced TNFα-induced SMC inflammation (MCP-1 ELISA) by 80%,but Olinone at the same concentration slightly increased MCP-1. Furthermore, whereas RVX208 abolished PDGF-BB or TNFα-induced STAT3 phosphorylation (Western blotting), Olinone slightly increased phospho-STAT3. Conclusions: Our results reveal that blocking two BET bromodomains respectively produces distinct effects on SMC phenotype transformation, suggesting their differential epigenetic functions. Further elucidation of the underlying molecular mechanisms should contribute to precise targeting of the BET family for optimal mitigation of IH.


2018 ◽  
Vol 19 (12) ◽  
pp. 3702 ◽  
Author(s):  
Grazia Femminella ◽  
Tony Thayanandan ◽  
Valeria Calsolaro ◽  
Klara Komici ◽  
Giuseppe Rengo ◽  
...  

Alzheimer’s disease is the most common form of dementia and is a significant burden for affected patients, carers, and health systems. Great advances have been made in understanding its pathophysiology, to a point that we are moving from a purely clinical diagnosis to a biological one based on the use of biomarkers. Among those, imaging biomarkers are invaluable in Alzheimer’s, as they provide an in vivo window to the pathological processes occurring in Alzheimer’s brain. While some imaging techniques are still under evaluation in the research setting, some have reached widespread clinical use. In this review, we provide an overview of the most commonly used imaging biomarkers in Alzheimer’s disease, from molecular PET imaging to structural MRI, emphasising the concept that multimodal imaging would likely prove to be the optimal tool in the future of Alzheimer’s research and clinical practice.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Paola Brescia ◽  
Cristina Richichi ◽  
Giuliana Pelicci

Cancer stem cells (CSCs) were isolated in multiple tumor types, including human glioblastomas, and although the presence of surface markers selectively expressed on CSCs can be used to isolate them, no marker/pattern of markers are sufficiently robust to definitively identify stem cells in tumors. Several markers were evaluated for their prognostic value with promising early results, however none of them was proven to be clinically useful in large-scale studies, leading to outstanding efforts to identify new markers. Given the heterogeneity of human glioblastomas further investigations are necessary to identify both cancer stem cell-specific markers and the molecular mechanisms sustaining the tumorigenic potential of these cells to develop tailored treatments. Markers for glioblastoma stem cells such as CD133, CD15, integrin-α6, L1CAM might be informative to identify these cells but cannot be conclusively linked to a stem cell phenotype. Overlap of expression, functional state and morphology of different subpopulations lead to carefully consider the techniques employed so far to isolate these cells. Due to a dearth of methods and markers reliably identifying the candidate cancer stem cells, the isolation/enrichment of cancer stem cells to be therapeutically targeted remains a major challenge.


Sign in / Sign up

Export Citation Format

Share Document