scholarly journals Polyindole Based Nanocomposites and Their Applications: A Review

2019 ◽  
Vol 16 (2) ◽  
pp. 97-102 ◽  
Author(s):  
Rita ◽  
Sameena Mehtab ◽  
M.G.H. Zaidi ◽  
Kavita Singhal ◽  
Bhagwati Arya ◽  
...  

Polyindole (PIn) is hetroatomic organic molecule which belongs to the fused-ring family have emerged in the past several decades as promising materials due to their unique physical and electrochemical properties. PIn was successfully synthesized by chemical polymerization of indole. Properties of PIn can be improved by mixing polymer with conducting metals, metal oxide, carbon nanocomposites and other materials. Polyindole nanocomposites (PNCs) were characterized through various spectral, thermal and electrical methods. FT-IR (Fourier transform infrared spectroscopy) spectra confirmed the formation of PNCs and SEM (Scanning electron microscopy) reveal the microstructure of surface of PNCs. Thermal characterization revealed that thermal stability of PNCs increases with addition of metal, metal oxide, carbon nanocomposites and other materials. These studies revealed that PNCs of PIn with other metals have an important influence on supercapacitors electrochemical devices, catalysis, anticorrosion, diodes, sensor and biology related applications. This review provide an overview of the preparation of PIn and their composites, followed by their application in various fields with future perspectives.

2019 ◽  
Vol 31 (8) ◽  
pp. 1779-1784
Author(s):  
V. Mohanraj ◽  
R. Pavithra ◽  
M. Thenmozhi ◽  
R. Umarani

Phenyl trimethylammonium tetrachlorocobaltate, crystals were grown by slow evaporation technique. The crystal was bright, transparent. The three dimensional structure of the phenyl trimethylammonium tetrachlorocobaltate was obtained from single crystal X-ray diffraction studies. The molecule belongs to monoclinic crystal system with C2/c space group. The presence of functional groups and modes of vibrations were identified by FT-IR spectroscopy. 1H NMR spectroscopy was also used to characterise the compound and the thermal stability of the crystal was established by TGA/DT analysis. This work undergoes phase transition which makes the study interesting.


2015 ◽  
Vol 2 (2) ◽  
pp. 70-73
Author(s):  
Kannan.P ◽  
Thambidurai.S ◽  
Suresh.N

Growth of optically transparent single crystals of thiourea succinic acid (TUSA) was grown successfully from aqueous solution by slow evaporation technique. The crystal structure was elucidated using the single crystal XRD. The various functional groups and the modes of vibrations were identified by FT-IR spectroscopic analysis. The optical absorption studies indicate that the optical transparency window is quite wide making its suitable for NLO applications. Thermal stability of the crown crystal carried out by TGA-DTA analysis.


2020 ◽  
Vol 23 (8) ◽  
pp. 687-698 ◽  
Author(s):  
Houda N. Washah ◽  
Elliasu Y. Salifu ◽  
Opeyemi Soremekun ◽  
Ahmed A. Elrashedy ◽  
Geraldene Munsamy ◽  
...  

For the past few decades, the mechanisms of immune responses to cancer have been exploited extensively and significant attention has been given into utilizing the therapeutic potential of the immune system. Cancer immunotherapy has been established as a promising innovative treatment for many forms of cancer. Immunotherapy has gained its prominence through various strategies, including cancer vaccines, monoclonal antibodies (mAbs), adoptive T cell cancer therapy, and immune checkpoint therapy. However, the full potential of cancer immunotherapy is yet to be attained. Recent studies have identified the use of bioinformatics tools as a viable option to help transform the treatment paradigm of several tumors by providing a therapeutically efficient method of cataloging, predicting and selecting immunotherapeutic targets, which are known bottlenecks in the application of immunotherapy. Herein, we gave an insightful overview of the types of immunotherapy techniques used currently, their mechanisms of action, and discussed some bioinformatics tools and databases applied in the immunotherapy of cancer. This review also provides some future perspectives in the use of bioinformatics tools for immunotherapy.


2019 ◽  
pp. 089270571987822
Author(s):  
Saud Aldajah ◽  
Mohammad Y Al-Haik ◽  
Waseem Siddique ◽  
Mohammad M Kabir ◽  
Yousef Haik

This study reveals the enhancement of mechanical and thermal properties of maleic anhydride-grafted polypropylene (PP- g-MA) with the addition of nanocrystalline cellulose (NCC). A nanocomposite was manufactured by blending various percentages of PP, MA, and NCC nanoparticles by means of a twin-screw extruder. The influence of varying the percentages of NCC on the mechanical and thermal behavior of the nanocomposite was studied by performing three-point bending, nanoindentation, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy tests. The novelty of this study stems on the NCC nanoparticles and their ability to enhance the mechanical and thermal properties of PP. Three-point bending and nanoindentation tests revealed improvement in the mechanical properties in terms of strength, modulus, and hardness of the PP- g-MA nanocomposites as the addition of NCC increased. SEM showed homogeneity between the mixtures which proved the presence of interfacial adhesion between the PP- g-MA incorporated with NCC nanoparticles that was confirmed by the FTIR results. DSC and TGA measurements showed that the thermal stability of the nanocomposites was not compromised due to the addition of the coupling agent and reinforced nanoparticles.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 704
Author(s):  
Moumouni Konate ◽  
Jacob Sanou ◽  
Amos Miningou ◽  
David Kalule Okello ◽  
Haile Desmae ◽  
...  

Groundnut (Arachis hypogaea L.) is a major food and cash crop in Burkina Faso. Due to the growing demand for raw oilseeds, there is an increasing interest in groundnut production from traditional rain-fed areas to irrigated environments. However, despite implementation of many initiatives in the past to increase groundnut productivity and production, the groundnut industry still struggles to prosper due to the fact of several constraints including minimal development research and fluctuating markets. Yield penalty due to the presence of drought and biotic stresses continue to be a major drawback for groundnut production. This review traces progress in the groundnut breeding that started in Burkina Faso before the country’s political independence in 1960 through to present times. Up to the 1980s, groundnut improvement was led by international research institutions such as IRHO (Institute of Oils and Oleaginous Research) and ICRISAT (International Crops Research Institute for the Semi-Arid Tropics). However, international breeding initiatives were not sufficient to establish a robust domestic groundnut breeding programme. This review also provides essential information about opportunities and challenges for groundnut research in Burkina Faso, emphasising the need for institutional attention to genetic improvement of the crop.


2021 ◽  
Author(s):  
Yushu Shi ◽  
Huiyan Xu ◽  
Tongyao Liu ◽  
Shah Zeb ◽  
Yong Nie ◽  
...  

The scheme of the structure of this review includes an introduction from the metal oxide nanomaterials’ synthesis to application in H2 gas sensors—a vision from the past to the future.


Lab on a Chip ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 795-820
Author(s):  
Andrea Spanu ◽  
Laura Martines ◽  
Annalisa Bonfiglio

This review focuses on the applications of organic transistors in cellular interfacing. It offers a comprehensive retrospective of the past, an overview of the latest innovations, and a glance on the future perspectives of this fast-evolving field.


2021 ◽  
Vol 394 (10) ◽  
pp. 1991-2002
Author(s):  
Junchao Luo ◽  
Yin Zhang ◽  
Senbo Zhu ◽  
Yu Tong ◽  
Lichen Ji ◽  
...  

AbstractThe current understanding of osteoarthritis is developing from a mechanical disease caused by cartilage wear to a complex biological response involving inflammation, oxidative stress and other aspects. Nanoparticles are widely used in drug delivery due to its good stability in vivo and cell uptake efficiency. In addition to the above advantages, metal/metal oxide NPs, such as cerium oxide and manganese dioxide, can also simulate the activity of antioxidant enzymes and catalyze the degradation of superoxide anions and hydrogen peroxide. Degrading of metal/metal oxide nanoparticles releases metal ions, which may slow down the progression of osteoarthritis by inhibiting inflammation, promoting cartilage repair and inhibiting cartilage ossification. In present review, we focused on recent research works concerning osteoarthritis treating with metal/metal oxide nanoparticles, and introduced some potential nanoparticles that may have therapeutic effects.


Sign in / Sign up

Export Citation Format

Share Document