scholarly journals Zinc Oxide Nanoparticles Promoted Highly Efficient and Benign Synthesis of 3,4-Dihydropyrimidine-2(1H)-one/thione Derivatives

2021 ◽  
Vol 18 (2) ◽  
pp. 235-241
Author(s):  
Vinayak R. Bagul

Using the synthetic potential of recyclable zinc oxide(ZnO) nanoparticles (NPs), a proficient, elegant, and rapid one-pot synthesis of a variety of 3,4-dihydropyrimidine-2(1H)-one/thione derivatives from the1,3-dicarbonyl compound, urea/thiourea, and various aromatic aldehydes havebeen unveiled in the present research. TheZnONPs were synthesized by theco-precipitation method. The powder X-ray diffraction method was employed for the determination of thecrystallite size of the synthesized ZnONPs.The hexagonal phase was obtained in the XRD pattern of the synthesized ZnO NPs with anaverage crystallite size of 25 nm.The current synthetic strategy offers excellent yields, a short reaction time, favorable reaction conditions, easy transformation, non-chromatographic product purification, and catalyst recyclability. Furthermore, the catalyst could be retrieved and reused without losing any of its catalytic activity. As a result, this elegant protocol is an adequate method fordihydropyrimidinone/thione synthesis.

2016 ◽  
Vol 107 (2) ◽  
pp. 299 ◽  
Author(s):  
Zahra KHOOSHE-BAST ◽  
Najmeh Sahebzadeh ◽  
Mansour GHAFFARI-MOGHADDAM ◽  
Ali MIRSHEKAR

<p><em></em>Greenhouse whitefly,<em> Trialeurodes vaporariorum</em> is a major pest of horticultural and ornamental plants and is usually controlled with insecticides or biological control agents. In the current study, we examined the effects of synthesized zinc oxide nanoparticles (ZnO NPs) and <em>Beauveria bassiana</em> TS11 on <em>T. vaporariorum</em> adults. ZnO NPs were synthesized by precipitation method. Field emission scanning electron microscope images indicated that ZnO NPs were non-compacted uniformly. X-ray diffraction results confirmed the hexagonal wurtzite structure of ZnO NPs. Fourier transform infrared analysis showed an intense absorption peak at a range of 434-555 cm<sup>-1</sup> related to Zn-O bond. In bioassays, adults were exposed to different concentrations of ZnO NPs (3, 5, 10, 15, 20 mg l<sup>-1</sup>) and fungi (10<sup>4</sup>, 10<sup>5</sup>, 10<sup>6</sup>, 10<sup>7</sup>, 10<sup>8</sup> spores ml<sup>-1</sup>). LC<sub>50</sub> values for ZnO NPs and fungi were 7.35 mg l<sup>-1</sup>and 3.28×10<sup>5</sup> spores ml<sup>-1</sup>, respectively. Mortality rates obtained with ZnO NPs and fungi at the highest concentration were 91.6 % and 88.8 %, respectively. The results indicate a positive effect of ZnO NPs and <em>B. bassiana </em>TS11on adults. The current study was conducted under laboratory conditions, therefore, more studies are needed in field.</p>


2020 ◽  
Vol 32 (4) ◽  
pp. 907-911
Author(s):  
S. Akash ◽  
N. Ahalya ◽  
P. Dhamodhar

Zinc oxide nanoparticles were synthesized using epicarp of Punica granatum by combustion method at moderate temperatures. Zinc oxide nanoparticles obtained in agglomerate form were characterized by powder X-ray diffractometer (PXRD) and found to have hexagonal phase, wurtzite structure. The crystalline size of nanoparticle was found to be ~ 60 nm by using Debye-Scherrer formula. The morphology Index, Lorentz factor and Lorentz polarization factor were also calculated. Ultraviolet-visible spectroscopy (UV-vis) spectrum for ZnO nanoparticle showed a strong absorbance at 374 nm. This corresponds to the calculated band gap energy of 3.48 eV and the particle size calculated using band gap was found to be 50 nm. The Fourier Transform Infrared Spectroscopy (FTIR) spectrum showed a peak at 499 cm-1, which indicated Zn-O stretch bond. The scanning electron microscopy (SEM) analysis proved the size of nanoparticles synthesized were around 50 nm and energy dispersive X-ray spectroscopy (EDS) revealed the elemental composition of zinc oxide nanoparticles. The ZnO-NPs were evaluated for antibacterial activity against gram positive, tonsillitis causing Streptococcus pyogenes. From the present study, it was concluded that zinc oxide nanoparticles synthesized by combustion method could be valuable and economic in the field of nanotechnology.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Sidra Sabir ◽  
Muhammad Arshad ◽  
Sunbal Khalil Chaudhari

Nanotechnology is the most innovative field of 21st century. Extensive research is going on for commercializing nanoproducts throughout the world. Due to their unique properties, nanoparticles have gained considerable importance compared to bulk counterparts. Among other metal nanoparticles, zinc oxide nanoparticles are very much important due to their utilization in gas sensors, biosensors, cosmetics, drug-delivery systems, and so forth. Zinc oxide nanoparticles (ZnO NPs) also have remarkable optical, physical, and antimicrobial properties and therefore have great potential to enhance agriculture. As far as method of formation is concerned, ZnO NPs can be synthesized by several chemical methods such as precipitation method, vapor transport method, and hydrothermal process. The biogenic synthesis of ZnO NPs by using different plant extracts is also common nowadays. This green synthesis is quite safe and ecofriendly compared to chemical synthesis. This paper elaborates the synthesis, properties, and applications of zinc oxide nanoparticles.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bulcha Bekele ◽  
Anatol Degefa ◽  
Fikadu Tesgera ◽  
Leta Tesfaye Jule ◽  
R. Shanmugam ◽  
...  

Comparison of green and chemical precipitation method syntheses of zinc oxide nanoparticles (ZnO NPs) was performed, and antimicrobial properties were investigated. Avocado, mango, and papaya fruit extracts were carried out for the green synthesising methods, while the chemical precipitation method was chosen from chemical synthesis methods. Zinc nitrate was used as a salt precursor, whereas leaf extract was served as a reducing agent for green synthesising methods. In addition, sodium hydroxide, polyvinyl alcohol, and potassium hydroxide were used as reducing agents in the case of chemical precipitation synthesis methods. ZnO NPs were characterised by characterizing techniques such as Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The antimicrobial activities of prepared nanoparticles were evaluated on Bacillus subtilis (B. subtilis), Staphylococcus aureus (S. aureus), and Salmonella typhimurium (S. typhimurium). The particle sizes of the prepared samples which were evaluated by the Scherrer equation were in the range of 11-21 nm for green synthesis, while 30-40 nm for chemical precipitation synthesis methods. Small agglomerations were observed from SEM results of prepared ZnO NPs from both methods. Prepared ZnO NPs were showed strong antimicrobial properties. From the result, the inhibition zone was in the range of 15-24 mm for the green route and 7–15 mm for chemical precipitation methods, where the standard drugs have 25 mm of the zone of inhibition. A green synthesised method of preparing ZnO NPs gives promising antimicrobial properties compared to chemical synthesis and is also eco-friendly and safe compared to the chemical synthesis.


Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 42
Author(s):  
Tentu Nageswara Rao ◽  
T. Manohra Naidu ◽  
Min Soo Kim ◽  
Botsa Parvatamma ◽  
Y. Prashanthi ◽  
...  

Zinc oxide nanoparticles (ZnO NPs) were synthesized by a precipitation method, and a new charring–foaming agent (CFA) N-ethanolamine triazine-piperazine, melamine polymer (ETPMP) was synthesized via nucleophilic substitution reaction by using cyanuric chloride, ethanolamine, piperazine, and melamine as precursor molecules. FTIR and energy-dispersive X-ray spectroscopy (EDS) studies were employed to characterize and confirm the synthesized ETPMP structure. New intumescent flame retardant epoxy coating compositions were prepared by adding ammonium polyphosphate (APP), ETPMP, and ZnO NPs into an epoxy resin. APP and ETPMP were fixed in a 2:1 w/w ratio and used as an intumescent flame-retardant (IFR) system. ZnO NPs were loaded as a synergistic agent in different amounts into the IFR coating system. The synergistic effects of ZnO NPs on IFR coatings were systematically evaluated by limited oxygen index (LOI) tests, vertical burning tests (UL-94 V), TGA, cone calorimeter tests, and SEM. The obtained results revealed that a small amount of ZnO NPs significantly increased the LOI values of the IFR coating and these coatings had a V-0 ratings in UL-94 V tests. From the TGA data, it is clear that the addition of ZnO NPs could change the thermal degradation behaviors of coatings with increasing char residue percentage at high temperatures. Cone calorimeter data reported that ZnO NPs could decrease the combustion parameters including peak heat release rates (PHRRs), and total heat release (THR) rates. The SEM results showed that ZnO NPs could enhance the strength and the compactness of the intumescent char, which restricted the flow of heat and oxygen.


2021 ◽  
pp. 81-88 ◽  
Author(s):  
Faruk Hosain ◽  
Md Shafiul Islam ◽  
Abdullah Al Ragib ◽  
Muhammad Zukaul Islam ◽  
Tariqul Islam

Based on paralyzed and death time, zinc oxide (ZnO) nanoparticles (NPs) were preliminarily investigated for possible biological effectiveness of anthelmintic activity on Pheretima Posthuma. After synthesizing ZnO NPs by low-temperature precipitation method with slight modification, size, morphology, and shape evaluation of these nanoparticles were characterized by scanning electron microscopy and annealing temperature in the range 400-700C. In this anthelmintic assay, the paralyzed time (PT) was gradually shorter with the increase of the sample concentration, for instance, when high concentration (40mg/ml) sample was applied on adult worms the paralyzed time was 35.6 minutes only. The death time (DT) was 450 and 80 minutes when the sample concentration was 20 and 40 mg/ml respectively. These results were compared with albendazole as a reference showed PT and DT 378.6 and 402.3 minutes respectively, and showed maximum dose-dependent anthelmintic activity. Finally, at higher concentration paralytic effect (PE) was showed much earlier and subsequently, it is important to note that the time taken for death observation was shorter.


Author(s):  
Harish Kumar ◽  
Manisha Kumari

Objectives: A novel facile synthesis of zinc oxide (ZnO) and zinc-graphene oxide nanocomposites (ZnGONC) was achieved by modified sol-geltechnique for their pharmaceutical and therapeutic use.Materials and Methods: Spherical, crystalline, defect-free Zinc oxide nanoparticles (ZnO NPs) with diameter 70-90 nm were synthesized by modifiedsol-gel technique. Reduced graphene oxide was synthesized by modified Hummers method. ZnGONC were synthesized by in situ method. The crystallinenature, size, shape, and dimensions of the NPs, graphene oxide, and nanocomposites were studied by X-ray diffraction method. Transmission electronmicroscopy analysis was carried out to examine the morphology of NPs and nanocomposites.Results: Fourier transform infrared spectroscopy analysis confirms that the ZnO NPs are surrounded by oxygen and silicon atoms. Antibacterialactivity of ZnO NPs and ZnGONC was investigated against Gram-positive and Gram-negative bacteria. Zone of inhibition shown by ZnO NPs andZnGONC was found to be higher than six investigated standard antibiotics.Conclusion: Synthesized ZnO NPs and nanocomposites can be used as antibacterial agents. This eco-friendly method of synthesis of ZnO NPs andZnGONC could be a viable solution for industrial applications in the future and therapeutic needs.


2020 ◽  
Vol 17 ◽  
Author(s):  
Ghanshyam Jadhav ◽  
Vijay Medhane ◽  
Dattatray Deshmukh

: We herein, describe efficient and scalable synthesis of 2,4-diaryl substituted chromene [43-b] pyridine derivatives using multicomponent reaction strategy by microwave irradiation of 4-amino 2-oxo-2H-chromene, aromatic aldehydes and substituted anilines. This synthetic strategy was found to be very useful as it follows environment benign protocol, also it gives good outcome in terms of yield and requires shorter reaction time.


2018 ◽  
Vol 6 (9) ◽  
pp. 2342-2350 ◽  
Author(s):  
S. Ding ◽  
X. F. Yang ◽  
E. H. Song ◽  
C. L. Liang ◽  
B. Zhou ◽  
...  

Uniform perovskite core–shell nanocubes NaMn1−xMgxF3@NaMgF3 and NaMn1−xMgxF3:Yb3+@NaMgF3:Yb3+ have been successfully synthesized via a facile one-pot co-precipitation method at room temperature.


Sign in / Sign up

Export Citation Format

Share Document