Experimental Treatments: Women, Gender, and ‘Maternal Insanity’ in Victorian Psychiatric Institutions, 1920–36

2021 ◽  
Vol 23 (1) ◽  
pp. 1-18
Author(s):  
Alison Watts
Genetics ◽  
1989 ◽  
Vol 121 (3) ◽  
pp. 411-422
Author(s):  
M F Wojciechowski ◽  
M A Hoelzer ◽  
R E Michod

Abstract In Bacillus subtilis, DNA repair and recombination are intimately associated with competence, the physiological state in which the bacterium can bind, take up and recombine exogenous DNA. Previously, we have shown that the homologous DNA transformation rate (ratio of transformants to total cells) increases with increasing UV dosage if cells are transformed after exposure to UV radiation (UV-DNA), whereas the transformation rate decreases if cells are transformed before exposure to UV (DNA-UV). In this report, by using different DNA repair-deficient mutants, we show that the greater increase in transformation rate in UV-DNA experiments than in DNA-UV experiments does not depend upon excision repair or inducible SOS-like repair, although certain quantitative aspects of the response do depend upon these repair systems. We also show that there is no increase in the transformation rate in a UV-DNA experiment when repair and recombination proficient cells are transformed with nonhomologous plasmid DNA, although the results in a DNA-UV experiment are essentially unchanged by using plasmid DNA. We have used din operon fusions as a sensitive means of assaying for the expression of genes under the control of the SOS-like regulon in both competent and noncompetent cell subpopulations as a consequence of competence development and our subsequent experimental treatments. Results indicate that the SOS-like system is induced in both competent and noncompetent subpopulations in our treatments and so should not be a major factor in the differential response in transformation rate observed in UV-DNA and DNA-UV treatments. These results provide further support to the hypothesis that the evolutionary function of competence is to bring DNA into the cell for use as template in the repair of DNA damage.


Author(s):  
Yinli Bi ◽  
Linlin Xie ◽  
Zhigang Wang ◽  
Kun Wang ◽  
Wenwen Liu ◽  
...  

AbstractArbuscular mycorrhizal (AM) fungi can successfully enhance photosynthesis (Pn) and plants growth in agricultural or grassland ecosystems. However, how the symbionts affect species restoration in sunlight-intensive areas remains largely unexplored. Therefore, this study’s objective was to assess the effect of AM fungi on apricot seedling physiology, within a specific time period, in northwest China. In 2010, an experimental field was established in Shaanxi Province, northwest China. The experimental treatments included two AM fungi inoculation levels (0 or 100 g of AM fungal inoculum per seedling), three shade levels (1900, 1100, and 550 µmol m−2 s−1), and three ages (1, 3, and 5 years) of transplantation. We examined growth, Pn, and morphological indicators of apricot (Prunus sibirica L.) seedling performances in 2011, 2013, and 2015. The colonization rate in mycorrhizal seedlings with similar amounts of shade is higher than the corresponding controls. The mycorrhizal seedling biomass is significantly higher than the corresponding non-mycorrhizal seedling biomass. Generally, Pn, stomatal conductance (Gs), transpiration rate (Tr), and water use efficiency are also significantly higher in the mycorrhizal seedlings. Moreover, mycorrhizal seedlings with light shade (LS) have the highest Pn. WUE is increased in non-mycorrhizal seedlings because of the reduction in Tr, while Tr is increased in mycorrhizal seedlings with shade. There is a significant increase in the N, P, and K fractions detected in roots compared with shoots. This means that LS had apparent benefits for mycorrhizal seedlings. Our results also indicate that AM fungi, combined with LS, exert a positive effect on apricot behavior.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 30-31
Author(s):  
Brooke N Smith ◽  
Stephen A Fleming ◽  
Mei Wang ◽  
Ryan N Dilger

Abstract Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically-important disease and ingestion of soy isoflavones (ISF) may benefit PRRSV-infected pigs due to demonstrated anti-inflammatory and anti-viral properties. The objective of this study was to quantify long-term effects of ISF consumption on fecal microbiome characteristics under disease challenge. In total, 96 weaned barrows were group-housed in a BSL-2 containment facility and allotted to 1 of 3 experimental treatments that were maintained throughout the wean-to-finish study: non-infected pigs receiving an ISF-devoid control diet (NC, n=24), and infected pigs receiving either the control diet (PC, n=36) or that supplemented with total ISF in excess of 1,600 mg/kg (ISF, n=36) (Table 1). Following a 7-day adaptation, pigs were inoculated intranasally with either a sham-control (PBS) or live PRRSV (1×105 TCID50/mL, strain NADC20). Fecal samples were collected from 48 individual pigs at pre-infection (-2 days post-inoculation, DPI), peak-infection (10 DPI), and post-infection (144 DPI) time-points and extracted DNA was used for 16S bacterial rRNA sequencing. Differences in bacterial communities among diet groups were evaluated using UniFrac distance matrices (weighted and unweighted) in QIIME. All other data were analyzed by one-way ANOVA performed on transformed data using R. Across all time-points, only minimal differences were observed due to ISF alone. At 10 DPI, PRRSV infection reduced Prevotella 9 genera abundance from approximately 20% to less than 10%, but the specific function of this variety in pigs is unclear. The most notable finding was decreased relative abundance of Actinobacteria at 144 DPI between non-infected and infected treatments (P < 0.05), which is consistent with various dysbioses observed in other disease models. Our findings indicate that differences present were mainly due to PRRSV infection and not strongly influenced by ISF ingestion, which implies previously observed performance benefits conferred by dietary ISF are not likely due to changes in microbiome composition.


2021 ◽  
Vol 11 (4) ◽  
pp. 1557
Author(s):  
Naoki Kano ◽  
Takumi Hori ◽  
Haixin Zhang ◽  
Naoto Miyamoto ◽  
David Eva Vanessa Anak ◽  
...  

The removal of cadmium (Cd) and zinc (Zn) from soil by phytoremediation was investigated using Taraxacum officinale and Gazania. A plant environmental control system was used to cultivate the plants. The effects of different biodegradable chelating agents (i.e., EDDS, HIDS, and GLDA), relative humidity, and other competitive metals on the adsorption of Cd and Zn were also studied. In addition, the approach for metal recovery was explored by extraction of metals from plants after phytoremediation using Gazania. The concentrations of Cd and Zn were determined by inductively coupled plasma mass spectrometry (ICP-MS). In addition, one-way analysis of variance (ANOVA) tests were performed.to determine significant differences between the experimental treatments adopted in this work. Consequently, the following main conclusions were obtained: (1) In the case of Taraxacum officinale, Cd and Zn could be removed even under the presence of other heavy metals. (2) By adding a chelating agent, the amount absorbed by the shoot generally increased. (3) In the case of Gazania, the concentration of Cd was higher in root than that in shoot, whereas the concentration of Zn was higher in the shoot than that in the root. (4) Taraxacum officinale was more suitable for phytoremediation of Cd than Gazania. (5) Cd and Zn could be extracted from plants by adding a low concentration of nitric acid. (6) The one-way ANOVA tests showed no statistically significant differences among the experimental treatments.


2009 ◽  
Vol 89 (2) ◽  
pp. 285-293 ◽  
Author(s):  
S J Bach ◽  
R P Johnson ◽  
K. Stanford ◽  
T A McAllister

Bacteriophage biocontrol has potential as a means of mitigating the prevalence of Escherichia coli O157:H7 in ruminants. The efficacy of oral administration of bacteriophages for reducing fecal shedding of E. coli O157:H7 by sheep was evaluated using 20 Canadian Arcott rams (50.0 ± 3.0) housed in four rooms (n = 5) in a contained facility. The rams had ad libitum access to drinking water and a pelleted barley-based total mixed ration, delivered once daily. Experimental treatments consisted of administration of E. coli O157:H7 (O157), E. coli O157:H7+bacteriophages (O157+phage), bacteriophages (phage), and control (CON). Oral inoculation of the rams with 109 CFU of a mixture of four nalidixic acid-resistant strains of E. coli O157:H7 was performed on day 0. A mixture of 1010 PFU of bacteriophages P5, P8 and P11 was administered on days -2, -1, 0, 6 and 7. Fecal samples collected on 14 occasions over 21 d were analyzed for E. coli O157:H7, total E. coli, total coliforms and bacteriophages. Sheep in treatment O157+phage shed fewer (P < 0.05) E. coli O157:H7 than did sheep in treatment O157. Populations of total coliforms and total E. coli were similar (P < 0.05) among treatments, implying that bacteriophage lysis of non-target E. coli and coliform bacteria in the gastrointestinal tract did not occur. Bacteriophage numbers declined rapidly over 21 d, which likely reduced the chance of collision between bacteria and bacteriophage. Oral administration of bacteriophages reduced shedding of E. coli O157:H7 by sheep, but a delivery system that would protect bacteriophages during passage through the intestine may increase the effectiveness of this strategy as well as allow phage to be administered in the feed.Key words: Escherichia coli O157:H7, bacteriophage, sheep, environment, coliforms


2021 ◽  
pp. 1-38
Author(s):  
B. Mohtashami ◽  
H. Khalilvandi-Behroozyar ◽  
R. Pirmohammadi ◽  
M. Dehghan-Banadaky ◽  
M. Kazemi-Bonchenari ◽  
...  

Abstract This study aimed to evaluate the effects of different supplemental fat sources [soybean oil (SBO) as a source of n-6 fatty acid and fish oil (FO) as a source of n-3 fatty acids] in the starter feed of milk-fed dairy calves during the hot season. Forty Holstein calves (3 d of age; 39.67 kg of body weight; ten calves per group) were randomly assigned to the experimental treatments as follows: (1) starter feed supplemented with no fat source (CON), (2) starter feed supplemented with 3% SBO (DM basis), (3) starter feed supplemented with 3% FO (DM basis), and (4) starter feed supplemented with an equal mixture of SBO and FO (1.5% each, DM basis). The milk feeding schedule was constant for treatments and all calves were weaned on d 65 of age. Results show that calves had greater starter intake, average daily gain, and body length when fed SBO compared to other treatments. However, feed efficiency was increased and inflammatory indicators (tumor necrosis factor-alpha, serum amyloid A and haptoglobin) concentrations were reduced in the calves fed FO compared to the other treatments. In summary, it was revealed that SBO rich in n-6 FA improved starter intake and growth performance, while FO rich in n-3 FA could improve the immune function of calves. Due to the current experimental condition, an equal mixture of SBO and FO (1.5% each, DM basis) can be recommended to have an optimum growth performance and immune function while the calves are reared under the heat conditions.


1999 ◽  
Vol 47 (2) ◽  
pp. 181-190 ◽  
Author(s):  
A. Bersényi ◽  
S. Fekete ◽  
I. Hullár ◽  
I. Kádár ◽  
M. Szilágyi ◽  
...  

Carrots were grown on soils polluted by heavy metal salts. Each particular microelement reached a high concentration [molybdenum (Mo) 39.00, cadmium (Cd) 2.30, lead (Pb) 4.01, mercury (Hg) 30.00, and selenium (Se) 36.20 mg/kg dry matter] in the carrot. In a metabolic balance trial conducted with 15 male and 15 female New Zealand White rabbits, the control animals (n = 5) were fed ad libitum with concentrate as basal diet, while the other rabbits received the basal diet and carrots containing the particular microelement. Blood samples were taken to determine the activity of serum enzymes. To investigate the metabolism of Mo, Cd, Pb, Hg and Se, samples were taken from the heart, liver, lungs, kidneys, spleen, ovaries/testicles, entire digestive tract, adipose tissue, femur, hair, faeces and urine. Carrot had significantly higher digestibility for all nutrients than the rabbit concentrate. Carrot samples of high Pb content had the lowest digestibility of crude protein. The microelements differed in their rate of accumulation in the organs examined: Mo and Cd accumulated in the kidneys, Pb in the kidneys, liver, bones and lungs, Hg in the kidneys and liver, while Se in the liver, kidneys and heart. The proportions of microelements eliminated from the body either via the faeces and urine (Mo 80.18% and Se 47.41%) or via the faeces (Cd 37.86%, Pb 66.39%, Hg 64.65%) were determined. Pathohistological examination revealed that the rate of spermatogenesis was reduced in the Mo, Cd, Pb and Hg groups compared to the control. Lead, Cd and Hg intake resulted in a considerable decrease in gamma-glutamyltransferase (GGT) and in an increase of alkaline phosphatase (ALP) activity because of damages to the kidneys and bones. All experimental treatments decreased the activity of cholinesterase (CHE) because of lesions in the liver.


Sign in / Sign up

Export Citation Format

Share Document