scholarly journals Overexpression of EcbHLH57 Transcription Factor from Eleusine coracana L. in Tobacco Confers Tolerance to Salt, Oxidative and Drought Stress

PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0137098 ◽  
Author(s):  
K. C. Babitha ◽  
Ramu S. Vemanna ◽  
Karaba N. Nataraja ◽  
M. Udayakumar
2016 ◽  
Vol 16 (S1) ◽  
Author(s):  
Hifzur Rahman ◽  
Valarmathi Ramanathan ◽  
Jagedeeshselvam Nallathambi ◽  
Sudhakar Duraialagaraja ◽  
Raveendran Muthurajan

Author(s):  
Jenifer Lolita C

Basic leucine zipper (bZIP) transcription factors comprise one of the largest gene families in plants. They play a key role in almost every aspect of plant growth and development and also in biotic and abiotic stress tolerance. In this study, we were attempted to study characterization of bZIP, a transcription factor from a climate smart cereal finger millet (Eleusine coracana L.). Seeds of Eleusine coracana (finger millet) was purchase from local market and were grown under field conditions drought and salt stress conditions. In this study, EcbZIP gene was isolated from finger millet, cloned into DH5α cells, screened by using colony PCR and expression analysis in response to two abiotic stresses was carried out by using qRT PCR. EcbZIP coding DNA sequence and protein sequence were retrieved from NCBI Nucleotide Database and Genpept of Accession number KP033192.1 and AJP67539.1 and validated by using SMART (simple modular architecture tool) Domain Tool. Cloning and expression studies were carried out using standardized molecular biology protocol. Results depicted that EcbZIP transcription factor showed significant upregulation under both salt and drought stress conditions, indicating that it plays an important role in tolerance towards these stresses. In conclusion, expression analysis of bZIP gene from finger millet seed cultivar ML-365 showed 5-fold upregulation to salt stress to drought stress and 8-fold upregulation to salt stress. Hence, it can serve as a candidate gene for improving abiotic stress tolerance and can be helpful in enhancing the crop productivity under stress conditions.


2021 ◽  
Vol 22 (13) ◽  
pp. 6952
Author(s):  
Mingxin Yu ◽  
Junling Liu ◽  
Bingshuai Du ◽  
Mengjuan Zhang ◽  
Aibin Wang ◽  
...  

NAC (NAM, ATAF1/2, and CUC2) transcription factors are ubiquitously distributed in eukaryotes and play significant roles in stress response. However, the functional verifications of NACs in Picea (P.) wilsonii remain largely uncharacterized. Here, we identified the NAC transcription factor PwNAC11 as a mediator of drought stress, which was significantly upregulated in P. wilsonii under drought and abscisic acid (ABA) treatments. Yeast two-hybrid assays showed that both the full length and C-terminal of PwNAC11 had transcriptional activation activity and PwNAC11 protein cannot form a homodimer by itself. Subcellular observation demonstrated that PwNAC11 protein was located in nucleus. The overexpression of PwNAC11 in Arabidopsis obviously improved the tolerance to drought stress but delayed flowering time under nonstress conditions. The steady-state level of antioxidant enzymes’ activities and light energy conversion efficiency were significantly increased in PwNAC11 transgenic lines under dehydration compared to wild plants. PwNAC11 transgenic lines showed hypersensitivity to ABA and PwNAC11 activated the expression of the downstream gene ERD1 by binding to ABA-responsive elements (ABREs) instead of drought-responsive elements (DREs). Genetic evidence demonstrated that PwNAC11 physically interacted with an ABA-induced protein—ABRE Binding Factor3 (ABF3)—and promoted the activation of ERD1 promoter, which implied an ABA-dependent signaling cascade controlled by PwNAC11. In addition, qRT-PCR and yeast assays showed that an ABA-independent gene—DREB2A—was also probably involved in PwNAC11-mediated drought stress response. Taken together, our results provide the evidence that PwNAC11 plays a dominant role in plants positively responding to early drought stress and ABF3 and DREB2A synergistically regulate the expression of ERD1.


2019 ◽  
Author(s):  
Pincang Zhao ◽  
Shenglin Hou ◽  
xiufang guo ◽  
Junting Jia ◽  
Weiguang Yang ◽  
...  

Abstract Background Drought is one of the most serious factors limiting plant growth and production. Sheepgrass can adapt well to various adverse conditions, including drought. However, during germination, sheepgrass young seedlings are sensitive to these adverse conditions. Therefore, the adaptability of seedlings is very important for plant survival, especially in plants that inhabit grasslands or the construction of artificial grassland. Results In this study, we found a sheepgrass MYB-related transcription factor, LcMYB2 that is up-regulated by drought stress and returns to a basal level after rewatering. The expression of LcMYB2 was mainly induced by osmotic stress and was localized to the nucleus. Furthermore, we demonstrate that LcMYB2 promoted seed germination and root growth under drought and ABA treatments. Additionally, we confirmed that LcMYB2 can regulate LcDREB2 expression in sheepgrass by binding to its promoter, and it activates the expression of the osmotic stress marker genes AtDREB2A, AtLEA14 and AtP5CS1 by directly binding to their promoters in transgenic Arabidopsis. Conclusions Based on these results, we propose that LcMYB2 improves plant drought stress tolerance by increasing the accumulation of osmoprotectants and promoting root growth. Therefore, LcMYB2 plays pivotal roles in plant responses to drought stress and is an important candidate for genetic manipulation to create drought-resistant crops, especially during seed germination.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2149
Author(s):  
Nkulu Kabange Rolly ◽  
Byung-Wook Yun

Nitrogen (N) is an essential macronutrient, which contributes substantially to the growth and development of plants. In the soil, nitrate (NO3) is the predominant form of N available to the plant and its acquisition by the plant involves several NO3 transporters; however, the mechanism underlying their involvement in the adaptive response under abiotic stress is poorly understood. Initially, we performed an in silico analysis to identify potential binding sites for the basic leucine zipper 62 transcription factor (AtbZIP62 TF) in the promoter of the target genes, and constructed their protein–protein interaction networks. Rather than AtbZIP62, results revealed the presence of cis-regulatory elements specific to two other bZIP TFs, AtbZIP18 and 69. A recent report showed that AtbZIP62 TF negatively regulated AtbZIP18 and AtbZIP69. Therefore, we investigated the transcriptional regulation of AtNPF6.2/NRT1.4 (low-affinity NO3 transporter), AtNPF6.3/NRT1.1 (dual-affinity NO3 transporter), AtNRT2.1 and AtNRT2.2 (high-affinity NO3 transporters), and AtGLU1 and AtGLU2 (both encoding glutamate synthase) in response to drought stress in Col-0. From the perspective of exploring the transcriptional interplay of the target genes with AtbZIP62 TF, we measured their expression by qPCR in the atbzip62 (lacking the AtbZIP62 gene) under the same conditions. Our recent study revealed that AtbZIP62 TF positively regulates the expression of AtPYD1 (Pyrimidine 1, a key gene of the de novo pyrimidine biosynthesis pathway know to share a common substrate with the N metabolic pathway). For this reason, we included the atpyd1-2 mutant in the study. Our findings revealed that the expression of AtNPF6.2/NRT1.4, AtNPF6.3/NRT1.1 and AtNRT2.2 was similarly regulated in atzbip62 and atpyd1-2 but differentially regulated between the mutant lines and Col-0. Meanwhile, the expression pattern of AtNRT2.1 in atbzip62 was similar to that observed in Col-0 but was suppressed in atpyd1-2. The breakthrough is that AtNRT2.2 had the highest expression level in Col-0, while being suppressed in atbzip62 and atpyd1-2. Furthermore, the transcript accumulation of AtGLU1 and AtGLU2 showed differential regulation patterns between Col-0 and atbzip62, and atpyd1-2. Therefore, results suggest that of all tested NO3 transporters, AtNRT2.2 is thought to play a preponderant role in contributing to NO3 transport events under the regulatory influence of AtbZIP62 TF in response to drought stress.


Author(s):  
Yang Xiang ◽  
Xiujuan Sun ◽  
Xiangli Bian ◽  
Tianhui Wei ◽  
Tong Han ◽  
...  

Abstract Drought stress severely limits the growth, development, and productivity of crops, and therefore understanding the mechanisms by which plants respond to drought is crucial. In this study, we cloned a maize NAC transcription factor, ZmNAC49, and identified its function in response to drought stress. We found that ZmNAC49 is localized in the nucleus and has transcriptional activation activity. ZmNAC49 expression is rapidly and strongly induced by drought stress, and overexpression enhances stress tolerance in maize. Overexpression also significant decreases the transpiration rate, stomatal conductance, and stomatal density in maize. Detailed study showed that ZmNAC49 overexpression affects the expression of genes related to stomatal development, namely ZmTMM, ZmSDD1, ZmMUTE, and ZmFAMA. In addition, we found that ZmNAC49 can directly bind to the promoter of ZmMUTE and suppress its expression. Taken together, our results show that the transcription factor ZmNAC49 represses ZmMUTE expression, reduces stomatal density, and thereby enhances drought tolerance in maize.


Plant Science ◽  
2020 ◽  
Vol 301 ◽  
pp. 110689
Author(s):  
Xing-Long Ji ◽  
Hong-Liang Li ◽  
Zhi-Wen Qiao ◽  
Jiu-Cheng Zhang ◽  
Wei-Jian Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document