scholarly journals Whole-genome analyses of extended-spectrum or AmpC β-lactamase-producing Escherichia coli isolates from companion dogs in Japan

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246482
Author(s):  
Mayo Yasugi ◽  
Shingo Hatoya ◽  
Daisuke Motooka ◽  
Yuki Matsumoto ◽  
Shunsuke Shimamura ◽  
...  

The emergence and global spread of extended-spectrum or AmpC β-lactamase (ESBL/AmpC)-producing Enterobacteriaceae in companion animals have led to the hypothesis that companion animals might be reservoirs for cross-species transmission because of their close contact with humans. However, current knowledge in this field is limited; therefore, the role of companion animals in cross-species transmission remains to be elucidated. Herein, we studied ESBL/AmpC-producing Enterobacteriaceae, Escherichia coli in particular, isolated from extraintestinal sites and feces of companion dogs. Whole-genome sequencing analysis revealed that (i) extraintestinal E. coli isolates were most closely related to those isolated from feces from the same dog, (ii) chromosomal sequences in the ST131/C1-M27 clade isolated from companion dogs were highly similar to those in the ST131/C1-M27 clade of human origin, (iii) certain plasmids, such as IncFII/pMLST F1:A2:B20/blaCTX-M-27, IncI1/pMLST16/blaCTX-M-15, or IncI1/blaCMY-2 from dog-derived E. coli isolates, shared high homology with those from several human-derived Enterobacteriaceae, (iv) chromosomal blaCTX-M-14 was identified in the ST38 isolate from a companion dog, and (v) eight out of 14 tested ESBL/AmpC-producing E. coli isolates (i.e., ST131, ST68, ST405, and ST998) belonged to the human extraintestinal pathogenic E. coli (ExPEC) group. All of the bla-coding plasmids that were sequenced genome-wide were capable of horizontal transfer. These results suggest that companion dogs can spread ESBL/AmpC-producing ExPEC via their feces. Furthermore, at least some ESBL/AmpC-producing ExPECs and bla-coding plasmids can be transmitted between humans and companion dogs. Thus, companion dogs can act as an important reservoir for ESBL/AmpC-producing E. coli in the community.

Author(s):  
Emanuela Roscetto ◽  
Chiara Varriale ◽  
Umberto Galdiero ◽  
Camilla Esposito ◽  
Maria Rosaria Catania

Animal-assisted interventions (AAIs) are being implemented in many countries for the beneficial effects they have on humans. Patients involved in AAI are often individuals at greater risk of acquiring infections, and these activities involve close contact between humans and animals, as is the case with humans living with a pet. The spread of multidrug-resistant Enterobacterales is a serious problem for human health; an integrated One Health strategy is imperative to combat this threat. Companion dogs can be a reservoir of multidrug-resistant pathogens, and animal-to-human transmission could occur during AAI sessions. The aim of this review was to collect the available data on the carriage of extended-spectrum beta-lactamase-producing and carbapenem-resistant Enterobacterales in companion dogs and in an AAI context. Several papers have generally addressed the issue of microbial transmission during AAIs. Studies on the intestinal carriage of extended-spectrum beta-lactamase and/or carbapenem-resistant Enterobacterales have mainly been conducted in companion animals while few data are available on the carriage in dogs participating in AAI sessions. This review aims to draw attention to the antibiotic resistance problem in a One Health context and to the importance of extending infection control measures to this human–animal interface, to keep the balance of benefits/risks for AAIs shifted towards the benefits of these activities.


2021 ◽  
pp. 232-236
Author(s):  
Luviana Kristianingtyas ◽  
Mustofa Helmi Effendi ◽  
Adiana Mutamsari Witaningrum ◽  
Dhandy Koesoemo Wardhana ◽  
Emmanuel Nnabuike Ugbo

Background and Aim: The practice of keeping animals as pets is becoming increasingly common. The upsurge of extended-spectrum β-lactamase (ESBL)-producing organisms of animal origin is a health threat globally. This study aimed to identify the presence of extended-spectrum β-lactamase-producing Escherichia coli in companion dogs in animal clinics in Surabaya, Indonesia. Materials and Methods: A total of 85 rectal swab samples were collected from companion dogs at five animal clinics in different regions of Surabaya, Indonesia. The presence of E. coli was identified from the samples using standard methods, followed by antibiotic sensitivity testing. The resistant isolates were examined for the presence of ESBL using the double-disk synergy test method. The phenotypically identified ESBL-producing E. coli was further confirmed with an automated system using Vitek-2. Results: The rectal swab samples (n=85) tested were 100% positive for E. coli isolates. Eight (9.41%) out of the 85 E. coli obtained from rectal swabs were extended-spectrum β-lactamase producers. All eight ESBL-producing E. coli were identified by automated Vitek-2 confirmatory tests. Conclusion: This study provides insight into the prevalence of ESBL-producing organisms isolated from companion dogs in Indonesia. This work indicates the need for the general public to be more aware of the role of companion animals in disseminating pathogenic organisms, since they serve as potential reservoirs in the spread of antibiotic resistance affecting human health.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pimlapas Leekitcharoenphon ◽  
Markus Hans Kristofer Johansson ◽  
Patrick Munk ◽  
Burkhard Malorny ◽  
Magdalena Skarżyńska ◽  
...  

AbstractThe emergence of antimicrobial resistance (AMR) is one of the biggest health threats globally. In addition, the use of antimicrobial drugs in humans and livestock is considered an important driver of antimicrobial resistance. The commensal microbiota, and especially the intestinal microbiota, has been shown to have an important role in the emergence of AMR. Mobile genetic elements (MGEs) also play a central role in facilitating the acquisition and spread of AMR genes. We isolated Escherichia coli (n = 627) from fecal samples in respectively 25 poultry, 28 swine, and 15 veal calf herds from 6 European countries to investigate the phylogeny of E. coli at country, animal host and farm levels. Furthermore, we examine the evolution of AMR in E. coli genomes including an association with virulence genes, plasmids and MGEs. We compared the abundance metrics retrieved from metagenomic sequencing and whole genome sequenced of E. coli isolates from the same fecal samples and farms. The E. coli isolates in this study indicated no clonality or clustering based on country of origin and genetic markers; AMR, and MGEs. Nonetheless, mobile genetic elements play a role in the acquisition of AMR and virulence genes. Additionally, an abundance of AMR was agreeable between metagenomic and whole genome sequencing analysis for several AMR classes in poultry fecal samples suggesting that metagenomics could be used as an indicator for surveillance of AMR in E. coli isolates and vice versa.


Author(s):  
Wibke Wetzker ◽  
Yvonne Pfeifer ◽  
Solvy Wolke ◽  
Andrea Haselbeck ◽  
Rasmus Leistner ◽  
...  

Background: The monitoring of antimicrobial resistance (AMR) in microorganisms that circulate in the environment is an important topic of scientific research and contributes to the development of action plans to combat the spread of multidrug-resistant (MDR) bacteria. As a synanthropic vector for multiple pathogens and a reservoir for AMR, flies can be used for surveillance. Methods: We collected 163 flies in the inner city of Berlin and examined them for extended-spectrum β-lactamase (ESBL)-producing Escherichia coli genotypically and phenotypically. Results: The prevalence of ESBL-producing E. coli in flies was 12.9%. Almost half (47.6%) of the ESBL-positive samples showed a co-resistance to ciprofloxacin. Resistance to carbapenems or colistin was not detected. The predominant ESBL-type was CTX-M-1, which is associated with wildlife, livestock, and companion animals as a potential major source of transmission of MDR E. coli to flies. Conclusions: This field study confirms the permanent presence of ESBL-producing E. coli in an urban fly population. For continuous monitoring of environmental contamination with multidrug-resistant (MDR) bacteria, flies can be used as indicators without much effort.


2019 ◽  
Vol 6 (1) ◽  
pp. e000307 ◽  
Author(s):  
Alexandra Royden ◽  
Emma Ormandy ◽  
Gina Pinchbeck ◽  
Ben Pascoe ◽  
Matthew D Hitchings ◽  
...  

Extended-spectrum β-lactamase (ESBL)-producing bacteria causing clinical infections are often also multidrug-resistant (MDR; resistance to ≥3 antimicrobial drug classes), therefore treatment options may be limited. High carriage rates of these potentially zoonotic bacteria have been found in livestock and companion animals. Therefore, people working in veterinary hospitals may be a high-risk population for carriage. This is the first study to determine the prevalence and longitudinal carriage of antimicrobial-resistant (AMR) and ESBL-producing faecal Escherichia coli in veterinary hospital staff and students. Prevalence of faecal AMR and ESBL-producing E coli was determined in 84 staff members and students in three UK veterinary hospitals. Twenty-seven participants were followed for six weeks to investigate longitudinal carriage. Antimicrobial susceptibility and phenotypic ESBL production were determined and selected isolates were whole genome sequenced. ESBL-producing E coli were isolated from five participants (5.95 per cent; 95 per cent CI 0.89 to 11.0 per cent); two participants carried ESBL-producing E coli resistant to all antimicrobials tested. Carriage of MDR E coli was common (32.1 per cent; 95per cent CI 22.2 to 42.1 per cent) and there was a high prevalence of ciprofloxacin resistance (11.9 per cent; 95 per cent CI 4.98 to 18.8 per cent). ESBL-producing E coli were isolated from seven longitudinal participants (25.9 per cent; 95 per cent CI 9.40 to 42.5 per cent); two participants carried ESBL-producing E coli for the entire study period. Twenty-six participants (96.3 per cent; 95 per cent CI 89.2 to 100) carried ≥1 MDR E coli isolate during the six-week period, with seven participants (25.9 per cent) carrying ≥1 MDR isolate for at least five out of six weeks. The prevalence of faecal ESBL-producing E coli in cross-sectional participants is similar to asymptomatic general populations. However, much higher levels of carriage were observed longitudinally in participants. It is vital that veterinary hospitals implement gold-standard biosecurity to prevent transmission of MDR and ESBL-producing bacteria between patients and staff. Healthcare providers should be made aware that people working in veterinary hospitals are a high-risk population for carriage of MDR and ESBL-producing bacteria, and that this poses a risk to the carrier and for transmission of resistance throughout the wider community.


2011 ◽  
Vol 55 (12) ◽  
pp. 5666-5675 ◽  
Author(s):  
Bashar W. Shaheen ◽  
Rajesh Nayak ◽  
Steven L. Foley ◽  
Ohgew Kweon ◽  
Joanna Deck ◽  
...  

ABSTRACTResistance to extended-spectrum cephalosporins (ESC) among members of the familyEnterobacteriaceaeoccurs worldwide; however, little is known about ESC resistance inEscherichia colistrains from companion animals. Clinical isolates ofE. coliwere collected from veterinary diagnostic laboratories throughout the United States from 2008 to 2009.E. coliisolates (n= 54) with reduced susceptibility to ceftazidime or cefotaxime (MIC ≥ 16 μg/ml) and extended-spectrum-β-lactamase (ESBL) phenotypes were analyzed. PCR and sequencing were used to detect mutations in ESBL-encoding genes and the regulatory region of the chromosomal geneampC. Conjugation experiments and plasmid identification were conducted to examine the transferability of resistance to ESCs. All isolates carried theblaCTX-M-1-group β-lactamase genes in addition to one or more of the following β-lactamase genes:blaTEM,blaSHV-3,blaCMY-2,blaCTX-M-14-like, andblaOXA-1.DifferentblaTEMsequence variants were detected in some isolates (n= 40). Three isolates harbored ablaTEM-181gene with a novel mutation resulting in an Ala184Val substitution. Approximately 78% of the isolates had mutations in promoter/attenuator regions of the chromosomal geneampC, one of which was a novel insertion of adenine between bases −28 and −29. Plasmids ranging in size from 11 to 233 kbp were detected in the isolates, with a common plasmid size of 93 kbp identified in 60% of isolates. Plasmid-mediated transfer of β-lactamase genes increased the MICs (≥16-fold) of ESCs for transconjugants. Replicon typing among isolates revealed the predominance of IncI and IncFIA plasmids, followed by IncFIB plasmids. This study shows the emergence of conjugative plasmid-borne ESBLs amongE. colistrains from companion animals in the United States, which may compromise the effective therapeutic use of ESCs in veterinary medicine.


2008 ◽  
Vol 129 (1-2) ◽  
pp. 203-208 ◽  
Author(s):  
Andrea Moreno ◽  
Helia Bello ◽  
Drago Guggiana ◽  
Mariana Domínguez ◽  
Gerardo González

2015 ◽  
Vol 64 (3) ◽  
pp. 285-288 ◽  
Author(s):  
Magdalena Rzewuska ◽  
Ilona Stefańska ◽  
Magdalena Kizerwetter-Świda ◽  
Dorota Chrobak-Chmiel ◽  
Paulina Szczygielska ◽  
...  

Escherichia coli is a common cause of infections in companion animals. In recent years the increasing prevalence of resistance to β-lactams, including extended-spectrum cephalosporins, antimicrobials frequently used in small animal veterinary practice, was observed in canine isolates of E. coli. The aim of this study was to detect and to characterize extended-spectrum β-lactamases (ESBLs) produced by E. coli isolated from diseased dogs in Poland. Four isolates out of 119 studied (3.4%) were ESBL-positive. They harbored the blaSHV-12, blaCTX-M-15, and blaTEM-116 genes. This study provides the first report of the occurrence of ESBL-producing E. coli in dogs in Poland.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 782
Author(s):  
Elisa Massella ◽  
Cameron J. Reid ◽  
Max L. Cummins ◽  
Kay Anantanawat ◽  
Tiziana Zingali ◽  
...  

Animals, humans and food are all interconnected sources of antimicrobial resistance (AMR), allowing extensive and rapid exchange of AMR bacteria and genes. Whole genome sequencing (WGS) was used to characterize 279 Escherichia coli isolates obtained from animals (livestock, companion animals, wildlife), food and humans in Italy. E. coli predominantly belonged to commensal phylogroups B1 (46.6%) and A (29%) using the original Clermont criteria. One hundred and thirty-six sequence types (STs) were observed, including different pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Eight antimicrobial resistance genes (ARGs) and five chromosomal mutations conferring resistance to highest priority critically important antimicrobials (HP-CIAs) were identified (qnrS1, qnrB19, mcr-1, blaCTX-M1,15,55, blaCMY-2, gyrA/parC/parE, ampC and pmrB). Twenty-two class 1 integron arrangements in 34 strains were characterized and 11 ARGs were designated as intI1 related gene cassettes (aadA1, aadA2, aadA5, aad23, ant2_Ia, dfrA1, dfrA7, dfrA14, dfrA12, dfrA17, cmlA1). Notably, most intI1 positive strains belonged to rabbit (38%) and poultry (24%) sources. Three rabbit samples carried the mcr-1 colistin resistance gene in association with IS6 family insertion elements. Poultry meat harbored some of the most prominent ExPEC STs, including ST131, ST69, ST10, ST23, and ST117. Wildlife showed a high average number of virulence-associated genes (VAGs) (mean = 10), mostly associated with an ExPEC pathotype and some predominant ExPEC lineages (ST23, ST117, ST648) were identified.


Sign in / Sign up

Export Citation Format

Share Document