scholarly journals Effects of moisture content and tillage methods on creep properties of paddy soil

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253623
Author(s):  
Guoyang Liu ◽  
Junfang Xia ◽  
Kan Zheng ◽  
Jian Cheng ◽  
Jun Du ◽  
...  

The rheological properties parameters of paddy soil affect the interaction between the tillage tools and soil, thus influencing the operation quality and power consumption. In order to study the effects of tillage methods and moisture content on the rheological properties parameters of paddy soil in the middle and lower reaches of the Yangtze River, uniaxial compression creep tests of paddy soils with four moisture contents under no tillage (moisture contents: 26.71%, 24.52%, 23.26%, 21.28%) and plough tillage (moisture contents: 26.77%, 25.55%, 23.40%, 20.56%) were carried out using a TMS-PRO texture analyzer. The creep properties curves obtained from the tests, and the rheological constitutive equation of paddy soil under compression was established by Burgers viscoelastic model. Respectively, the quantitative change rules of creep properties of paddy soil with different moisture contents under different tillage methods and the correlation between these parameters were explored. The results showed that the moisture content under the three-year plough tillage and no tillage methods had significant influence on the rheological properties parameters of paddy soil (P < 0.05). The instantaneous elastic modulus, delay elastic modulus, and viscosity coefficient of the two paddy soils (no tillage and plough tillage soils) decreased with the increase of moisture content. However, the variation rules of relaxation time and delay viscosity coefficient with moisture content differed between these two paddy soils. Specifically, the strain rate of the two paddy soils decreased as moisture content decreased, where the total strain combines elastic strain, viscous strain, and viscoelastic strain. The initial strain rate and steady strain rate of the plough tillage paddy soils were lower than that of the no tillage paddy soils. The established creep model equation could be used to obtain viscoelastic rheological parameters of paddy soil in a wide range. The fitting equations between rheological parameters and moisture content were introduced into Burgers model, and the coupling equations between creep deformation and moisture content and time were derived, which could be used to predict the creep properties and deformation behavior of paddy soil in a certain range of no tillage and ploughed field. Overall, this study has a certain theoretical significance for the development and improvement of paddy soil rheology theory, and can also provide theoretical basis and technical support for the research of agricultural machinery design optimization, field water, soil conservation, soil tillage and compaction related simulation analysis in the middle and lower reaches of the Yangtze River.

2006 ◽  
Vol 63 (4) ◽  
pp. 341-350 ◽  
Author(s):  
Célia Regina Grego ◽  
Sidney Rosa Vieira ◽  
Aline Maria Antonio ◽  
Simone Cristina Della Rosa

Experiments in agriculture usually consider the topsoil properties to be uniform in space and, for this reason, often make inadequate use of the results. The objective of this study was to assess the variability for soil moisture content using geostatistical techniques. The experiment was carried out on a Rhodic Ferralsol (typic Haplorthox) in Campinas, SP, Brazil, in an area of 3.42 ha cultivated under the no tillage system, and the sampling was made in a grid of 102 points spaced 10 m x 20 m. Access tubes were inserted down to one meter at each evaluation point in order to measure soil moisture contents (cm³ cm-3) at depths of 30, 60 and 90 cm with a neutron moisture gauge. Samplings were made between the months of August and September of 2003 and in January 2004. The soil moisture content for each sampling date was analyzed using classical statistics in order to appropriately describe the central tendency and dispersion on the data and then using geostatistics to describe the spatial variability. The comparison between the spatial variability for different samplings was made examining scaled semivariograms. Water content was mapped using interpolated values with punctual kriging. The semivariograms showed that, at the 60 cm depth, soil water content had moderate spatial dependence with ranges between 90 and 110 m. However, no spatial dependence was found for 30 and 90 cm depths in 2003. Sampling density was insufficient for an adequate characterization of the spatial variability of soil moisture contents at the 30 and 90 cm depths.


2020 ◽  
Vol 5 (01) ◽  
pp. 1-15
Author(s):  
Abdel-Aal M. H.

A field experiment was carried out during the early summer seasons of 2018, at Agricultural Research Centre (ARC) Giza, Egypt. This study aims to examine the effect of three tillage treatments under three different moisture contents on some soil properties and on maize crop production. The experiments included three moisture contents of (MC1, 27.2 %), (MC2, 15.4 %) and (MC3, 7.2 %); as well as three tillage treatments, no-tillage control (NT), minimum tillage (MT) and conventional tillage (CT). The experimental was laid out in split-split plot design with four replications. The results showed that, there was significant effect of tillage at different moisture levels on soil physical and chemical properties. It was also indicated that the effect of tillage practices was significantly on soil bulk density, total porosity, hydraulic conductivity and moisture constants, where the conventional tillage at soil moisture level 15.4% (MC2) helped in improving soil bulk density, hydraulic conductivity and total porosity. Soil organic C, cations exchange capacity CEC, available N, P and K were improved in the soil surface layer of NT and decreased with depth. Clod mean weight diameter of soil was improved with 15.4-% of soil moisture content regardless of tillage depth and enhanced root proliferation by increasing density roots compared with minimum and no tillage in maize plant. The grain yields of maize were improving more under conventional tillage at moisture content 15.4% compared with other treatments. It was found that plant height and roots value increased by using conventional tillage compared with other tillage treatments.


Author(s):  
F. Seehofer ◽  
W. Schulz

AbstractThe phenomenon of the smoulder stream flowing through the cigarette during smouldering and during the puff intervals is demonstrated for the first time and its dependence upon physical conditions is examined. The volume of the smoulder stream can amount up to 180 ml per cigarette. Increasing draw resistance of the cigarette and augmenting moisture content of the tobacco as well as perforation of the cigarette paper have a decreasing effect on volume and velocity of the smoulder stream. The porosity of the cigarette paper has no perceptible influence. The spatial position of the cigarette affects volume and velocity of the smoulder stream. The influence exercised by the smoulder stream on the yields of total condensate, nicotine, phenols, aldehydes, and acroleine when the cigarette tip is open during the puff intervals is determined. When the moisture contents of the tobacco were extremely high, yield decreases reaching 50 % could be observed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun Kameda ◽  
Hamada Yohei

AbstractSubmarine debris flows are mass movement processes on the seafloor, and are geohazards for seafloor infrastructure such as pipelines, communication cables, and submarine structures. Understanding the generation and run-out behavior of submarine debris flows is thus critical for assessing the risk of such geohazards. The rheological properties of seafloor sediments are governed by factors including sediment composition, grain size, water content, and physico-chemical conditions. In addition, extracellular polymeric substances (EPS) generated by microorganisms can affect rheological properties in natural systems. Here we show that a small quantity of EPS (~ 0.1 wt%) can potentially increase slope stability and decrease the mobility of submarine debris flows by increasing the internal cohesion of seafloor sediment. Our experiments demonstrated that the flow behavior of sediment suspensions mixed with an analogue material of EPS (xanthan gum) can be described by a Herschel–Bulkley model, with the rheological parameters being modified progressively, but not monotonously, with increasing EPS content. Numerical modeling of debris flows demonstrated that the run-out distance markedly decreases if even 0.1 wt% of EPS is added. The addition of EPS can also enhance the resistivity of sediment to fluidization triggered by cyclic loading, by means of formation of an EPS network that binds sediment particles. These findings suggest that the presence of EPS in natural environments reduces the likelihood of submarine geohazards.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Hyeon W. Park ◽  
Jae W. Park ◽  
Won B. Yoon

AbstractNovel algorithm to determine the least cost formulation of a surimi blend was developed using linear programming (LP). Texture properties and the unit cost of surimi blend at the target moisture content were used as constraint functions and the objective function, respectively. The mathematical models to describe the moisture content dependence of the ring tensile properties were developed using critical moisture content, and the model parameters were used for the least cost LP (LCLP) model. The LCLP model successfully predicted the quality of surimi blend. Sensitivity analysis was used to obtain an additional information when the perturbations of design variables are provided. A standard procedure to determine the least cost formulation for blending surimi with varied moisture contents was systematically developed.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Gui-chen Li ◽  
Chong-chong Qi ◽  
Yuan-tian Sun ◽  
Xiao-lin Tang ◽  
Bao-quan Hou

The kinetics of fluid-solid coupling during immersion is an important topic of investigation in rock engineering. Two rock types, sandstone and mudstone, are selected in this work to study the correlation between the softening characteristics of the rocks and moisture content. This is achieved through detailed studies using scanning electron microscopy, shear tests, and evaluation of rock index properties during exposure to different moisture contents. An underground roadway excavation is simulated by dynamic finite element modeling to analyze the effect of moisture content on the stability of the roadway. The results show that moisture content has a significant effect on shear properties reduction of both sandstone and mudstone, which must thus be considered in mining or excavation processes. Specifically, it is found that the number, area, and diameter of micropores, as well as surface porosity, increase with increasing moisture content. Additionally, stress concentration is negatively correlated with moisture content, while the influenced area and vertical displacement are positively correlated with moisture content. These findings may provide useful input for the design of underground roadways.


2013 ◽  
Vol 807-809 ◽  
pp. 1648-1652
Author(s):  
Tie Jun Sun ◽  
Baderihu Tajilake

Experiment was executed to plant eco-grass of Bromus inermis Leyss on 15°bare slopes, and study effect of biological characters on dynamics of soil moisture contents. The results indicated that vegetation restored quickly on the bare slope after the eco-grass planted. There were 2473.4 kg/hm2 of overground biomass and 1744.1kg/hm2 of underground biomass, and 70% of underground biomass was in 0-10cm layer of soil. Meanwhile, there was a regulatory mechanism of soil moisture content for Bromus inermis Leyss. When rainfall was enough, soil moisture content in 0-80 cm layer could reach to the most of 26.83% quickly this year. Next it could decline near to the first value of 19.81% after rainfall stopped, and keep a dynamic balance between 19.48% and 19.96%. Moreover, the regulatory mechanism realized though underground biomass, and was clearer with underground biomass increasing, especially in the 0-40cm layer of soil.


Author(s):  
Julie Paprocki ◽  
Nina Stark ◽  
Hans C Graber ◽  
Heidi Wadman ◽  
Jesse E McNinch

A framework for estimating moisture content from satellite-based multispectral imagery of sandy beaches was tested under various site conditions and sensors. It utilizes the reflectance of dry soil and an empirical factor c relating reflectance and moisture content for specific sediment. Here, c was derived two ways: first, from in-situ measurements of moisture content and average NIR image reflectance; and second, from laboratory-based measurements of moisture content and spectrometer reflectance. The proposed method was tested at four sandy beaches: Duck, North Carolina, and Cannon Beach, Ocean Cape, and Point Carrew, Yakutat, Alaska. Both measured and estimated moisture content profiles were impacted by site geomorphology. For profiles with uniform slopes, moisture contents ranged from 3.0%-8.0% (Zone 1) and from 8.0%-23.0% (Zone 2). Compared to field measurements, the moisture contents estimated using c calibrated from in-situ and laboratory data resulted in percent error of 3.6%-44.7% and 2.7%-58.6%, respectively. The highest percent error occurred at the transition from Zone 1 to Zone 2. Generally, moisture contents were overestimated in Zone 1 and underestimated in Zone 2, but followed the expected trends based on field measurements. When estimated moisture contents in Zone 1 exceeded 10%, surface roughness, debris, geomorphology, and weather conditions were considered.


Author(s):  
Берик Картанбаевич Саяхов ◽  
Александр Геннадьевич Дидух ◽  
Гульнара Амангельдиевна Габсаттарова ◽  
Марат Давлетович Насибулин ◽  
Жасулан Канатович Наурузбеков

На начальных участках магистрального нефтепровода Узень - Атырау - Самара формируются партии низкозастывающих бузачинских и высокозастывающих мангышлакских нефтей. По маршруту транспортировки осуществляются дополнительные подкачки нефтей с различными физико-химическими и реологическими характеристиками, что может оказывать существенное влияние на свойства перекачиваемых нефтесмесей. Цель настоящей работы - исследование физико-химических и реологических свойств бузачинской и мангышлакской нефтесмесей на маршруте поставки Узень - Атырау, а также диапазона и причин изменений характеристик бузачинской нефти (основной в компонентном составе нефтесмесей, перекачиваемых по нефтепроводу Узень - Атырау - Самара). По результатам исследований установлено, что свойства мангышлакской нефтесмеси изменяются в незначительных пределах. Для бузачинской нефтесмеси свойственна нестабильность реологических параметров, которые могут изменяться в широком диапазоне в результате путевой подкачки на различных участках нефтепровода. Колебания реологических параметров наиболее показательных проб партий бузачинской нефтесмеси рекомендуется учитывать для решения задач повышения текучести высоковязких нефтей и оптимизации технологических режимов работы трубопроводов, по которым осуществляется перекачка таких нефтей. Методами газохроматографического анализа молекулярно-массового распределения тугоплавких парафинов и поляризационной микроскопии определена температура нагрева бузачинской и мангышлакской нефтесмесей, оптимальная для ввода депрессорной присадки. At the initial sections of the Uzen - Atyrau - Samara main oil pipeline, batches of low pour point Buzachinsky and high pour point Mangyshlak oils are formed. Additional pumping of oils with different physical, chemical and rheological characteristics is carried out along the transportation route, which can have a significant effect on the properties of the pumped oil mixtures. The purpose of this study is to examine the physical, chemical and rheological properties of Buzachi and Mangyshlak oil mixtures on the Uzen - Atyrau supply route, as well as the range and causes of changes in the characteristics of Buzachinsky oil (the main oil mixture in the blend composition pumped through the Uzen - Atyrau - Samara pipeline). According to the research results, it was found that the properties of the Mangyshlak oil mixture vary within insignificant limits. The Buzachinsky oil mixture is characterized by instability of rheological parameters, which can vary in a wide range as a result of route pumping at different pipeline sections. Fluctuations of the rheological parameters of the most indicative samples of batches of the Buzachinsky oil mixture are recommended to be taken into account in order to increase the fluidity of high-viscosity oils and optimize the process modes of operation of pipelines through which such oils are pumped. Using the methods of gas chromatographic analysis of the molecular weight distribution of high-melting-point paraffins, as well as polarization microscopy, the optimal heating temperature for the introduction of a pour point depressant into the Buzachinsky and Mangyshlak oil mixtures has been determined.


2021 ◽  
pp. 169-174
Author(s):  
Ivan I. Lishtvan ◽  
Vera N. Aleinikova

Knowledge about structure and rheological peculiarities of drilling solutions and reagents applied for the proceeding of oil wells has significant value for the forecasting of oil wells drilling. The research results of the structure of the humic substances of peat and brown coals precipitated in different pH ranges from the standpoint of their ability to structure formation on the base of the rheological curves obtaining of the flow of their dispersions and determining of their rheological parameters in terms of their application in drilling practice are given in the article. It is established that during transition from fraction, beset into alkaline media (12.0–8.5) to fraction beset into acid media (5.0–2.0) the decrease of the rheological indicators of caustobiolate humic substance is occurred. Rheological curves of the flow of the disperse of caustobiolate humic substances of the fraction 1 and 2 are characterized for strong fossil structures, disperses of humic substances of the fraction 3 is for less strong coagulation structures. Less structured are humic substances of brown coal so that their use is preferable for the regulation of the structure and rheological peculiarities of drilling solutions.


Sign in / Sign up

Export Citation Format

Share Document