scholarly journals Charting host-microbe co-metabolism in skin aging and application to metagenomics data

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258960
Author(s):  
Wynand Alkema ◽  
Jos Boekhorst ◽  
Robyn T. Eijlander ◽  
Steve Schnittger ◽  
Fini De Gruyter ◽  
...  

During aging of human skin, a number of intrinsic and extrinsic factors cause the alteration of the skin’s structure, function and cutaneous physiology. Many studies have investigated the influence of the skin microbiome on these alterations, but the molecular mechanisms that dictate the interplay between these factors and the skin microbiome are still not fully understood. To obtain more insight into the connection between the skin microbiome and the human physiological processes involved in skin aging, we performed a systematic study on interconnected pathways of human and bacterial metabolic processes that are known to play a role in skin aging. The bacterial genes in these pathways were subsequently used to create Hidden Markov Models (HMMs), which were applied to screen for presence of defined functionalities in both genomic and metagenomic datasets of skin-associated bacteria. These models were further applied on 16S rRNA gene sequencing data from skin microbiota samples derived from female volunteers of two different age groups (25–28 years (‘young’) and 59–68 years (‘old’)). The results show that the main bacterial pathways associated with aging skin are those involved in the production of pigmentation intermediates, fatty acids and ceramides. This study furthermore provides evidence for a relation between skin aging and bacterial enzymes involved in protein glycation. Taken together, the results and insights described in this paper provide new leads for intervening with bacterial processes that are associated with aging of human skin.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hye-Jin Kim ◽  
Jin Ju Kim ◽  
Nu Ri Myeong ◽  
Taeyune Kim ◽  
DooA Kim ◽  
...  

AbstractAlthough physiological changes are the most evident indicators of skin aging by alteration of the skin’s structure and function, we question whether skin aging is also affected by the structure and assembly process of the skin microbiome. We analysed the skin microbiomes of 73 healthy Chinese women in two age groups (25–35 years old and 56–63 years old) using 16S rRNA gene amplicon sequencing; the overall microbiome structure was significantly different between the two age groups. An analysis using ecological theory to evaluate the process of microbial community assembly processes revealed that the microbiomes of the older group were formed under a greater influence of the niche-based process, with the network of microbes being more collapsed than that of the younger group. Inferred metagenomic functional pathways associated with replication and repair were relatively more predominant in the younger group whereas, among the various metabolism-related pathways, those associated with biodegradation were more predominant in the older group. Interestingly, we found two segregated sub-typing patterns in the younger group which were also observed in the skin microbiomes of young Chinese women living in four other cities in China. The results of our study highlights candidate microbes and functional pathways that are important for future research into preventing skin aging and which could lead to a comprehensive understanding of age-related skin microbiome characteristics.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Manon Boxberger ◽  
Valérie Cenizo ◽  
Nadim Cassir ◽  
Bernard La Scola

AbstractThe skin is the exterior interface of the human body with the environment. Despite its harsh physical landscape, the skin is colonized by diverse commensal microbes. In this review, we discuss recent insights into skin microbial populations, including their composition and role in health and disease and their modulation by intrinsic and extrinsic factors, with a focus on the pathobiological basis of skin aging. We also describe the most recent tools for investigating the skin microbiota composition and microbe-skin relationships and perspectives regarding the challenges of skin microbiome manipulation.


2019 ◽  
Vol 20 (21) ◽  
pp. 5262 ◽  
Author(s):  
Shin ◽  
Lee ◽  
Hong ◽  
Lim ◽  
Byun

Quercetin is a naturally occurring polyphenol present in various fruits and vegetables. The bioactive properties of quercetin include anti-oxidative, anti-cancer, anti-inflammatory, and anti-diabetic effects. However, the effect of quercetin on skin aging and the direct molecular targets responsible have remained largely unknown. Herein, we investigated the protective effect of quercetin against UV-mediated skin aging and the molecular mechanisms responsible. Treatment with quercetin suppressed UV-induced matrix metalloproteinase-1 (MMP-1) and cyclooxygenase-2 (COX-2) expression and prevented UV-mediated collagen degradation in human skin tissues. Quercetin exerted potent inhibitory effects towards UV-induced activator protein-1 (AP-1) and nuclear factor-kappa B (NF-κB) activity. Further examination of the upstream signaling pathways revealed that quercetin can attenuate UV-mediated phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N terminal kinases (JNK), protein kinase B (Akt), and signal transducer and activator of transcription 3 (STAT3). Kinase assays using purified protein demonstrated that quercetin can directly inhibit protein kinase C delta (PKCδ) and Janus kinase 2 (JAK2) kinase activity. Quercetin was observed to bind to PKCδ and JAK2 in pull-down assays. These findings suggest that quercetin can directly target PKCδ and JAK2 in the skin to elicit protective effects against UV-mediated skin aging and inflammation. Our results highlight the potential use of quercetin as a natural agent for anti-skin aging applications.


2018 ◽  
Vol 19 (10) ◽  
pp. 3059 ◽  
Author(s):  
David Vollmer ◽  
Virginia West ◽  
Edwin Lephart

The history of cosmetics goes back to early Egyptian times for hygiene and health benefits while the history of topical applications that provide a medicinal treatment to combat dermal aging is relatively new. For example, the term cosmeceutical was first coined by Albert Kligman in 1984 to describe topical products that afford both cosmetic and therapeutic benefits. However, beauty comes from the inside. Therefore, for some time scientists have considered how nutrition reflects healthy skin and the aging process. The more recent link between nutrition and skin aging began in earnest around the year 2000 with the demonstrated increase in peer-reviewed scientific journal reports on this topic that included biochemical and molecular mechanisms of action. Thus, the application of: (a) topical administration from outside into the skin and (b) inside by oral consumption of nutritionals to the outer skin layers is now common place and many journal reports exhibit significant improvement for both on a variety of dermal parameters. Therefore, this review covers, where applicable, the history, chemical structure, and sources such as biological and biomedical properties in the skin along with animal and clinical data on the oral applications of: (a) collagen, (b) ceramide, (c) β-carotene, (d) astaxanthin, (e) coenzyme Q10, (f) colostrum, (g) zinc, and (h) selenium in their mode of action or function in improving dermal health by various quantified endpoints. Lastly, the importance of the human skin microbiome is briefly discussed in reference to the genomics, measurement, and factors influencing its expression and how it may alter the immune system, various dermal disorders, and potentially be involved in chemoprevention.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rie Dybboe Bjerre ◽  
Luisa Warchavchik Hugerth ◽  
Fredrik Boulund ◽  
Maike Seifert ◽  
Jeanne Duus Johansen ◽  
...  

AbstractThe human skin is colonized by a wide array of microorganisms playing a role in skin disorders. Studying the skin microbiome provides unique obstacles such as low microbial biomass. The objective of this study was to establish methodology for skin microbiome analyses, focusing on sampling technique and DNA extraction. Skin swabs and scrapes were collected from 9 healthy adult subjects, and DNA extracted using 12 commercial kits. All 165 samples were sequenced using the 16S rRNA gene. Comparing the populations captured by eSwabs and scrapes, 99.3% of sequences overlapped. Using eSwabs yielded higher consistency. The success rate of library preparation applying different DNA extraction kits ranged from 39% to 100%. Some kits had higher Shannon alpha-diversity. Metagenomic shotgun analyses were performed on a subset of samples (N = 12). These data indicate that a reduction of human DNA from 90% to 57% is feasible without lowering the success of 16S rRNA library preparation and without introducing taxonomic bias. Using swabs is a reliable technique to investigate the skin microbiome. DNA extraction methodology is crucial for success of sequencing and adds a substantial amount of variation in microbiome analyses. Reduction of host DNA is recommended for interventional studies applying metagenomics.


2021 ◽  
Vol 22 (22) ◽  
pp. 12489
Author(s):  
Hyunji Lee ◽  
Yongjun Hong ◽  
Miri Kim

Skin aging is a complex process influenced by intrinsic and extrinsic factors. Together, these factors affect the structure and function of the epidermis and dermis. Histologically, aging skin typically shows epidermal atrophy due to decreased cell numbers. The dermis of aged skin shows decreased numbers of mast cells and fibroblasts. Fibroblast senescence contributes to skin aging by secreting a senescence-associated secretory phenotype, which decreases proliferation by impairing the release of essential growth factors and enhancing degradation of the extracellular matrix through activation of matrix metalloproteinases (MMPs). Several molecular mechanisms affect skin aging including telomere shortening, oxidative stress and MMP, cytokines, autophagic control, microRNAs, and the microbiome. Accumulating evidence on the molecular mechanisms of skin aging has provided clinicians with a wide range of therapeutic targets for treating aging skin.


2017 ◽  
Author(s):  
Ashley A. Ross ◽  
Kirsten Müller ◽  
J. Scott Weese ◽  
Josh D. Neufeld

AbstractSkin is the largest organ of the body and represents the primary physical barrier between mammals and their external environment. The objective of this research was to generate a skin microbiota baseline for members of the class Mammalia, testing the effects of host species, geographic location, body region, and biological sex. The back, torso, and inner thigh regions of 177 non-human mammals were collected to include representatives from 38 species and 10 mammalian orders. Animals were collected from local farms, zoos, households, and the wild. All samples were amplified using the V3-V4 16S rRNA gene region and sequenced using a MiSeq (Illumina). For reference, previously published skin microbiome data from 20 human participants, sampled using an identical protocol to the non-human mammals, were included in the analysis. Human skin was significantly less diverse than all other mammalian orders and the factor most strongly associated with community variation for all samples was whether the host was a human. Within non-human samples, host taxonomic order was the most significant factor influencing the skin community, followed by the geographic location of the habitat. By comparing the congruence between known host phylogeny and microbial community dendrograms, we observed that Artiodactyla (even-toed ungulates) and Perissodactyla (odd-toed ungulates) had significant congruence, providing first evidence of phylosymbiosis between skin communities and their hosts.SignificanceSkin forms a critical protective barrier between a mammal and its external environment. Baseline data on the mammalian skin microbiome is crucial for making informed decisions related to veterinary research and biodiversity conservation strategies, in addition to providing insight into mammalian evolutionary history. To our knowledge, this study represents the largest mammalian skin microbiota project to date. These findings demonstrate that human skin is distinct, not only from other Primates, but from all 10 mammalian orders sampled. Using phylosymbiosis analysis, we provide the first evidence that co-evolution may be occurring between skin communities and their mammalian hosts, which warrants more in-depth future studies of the relationships between mammals and their skin microbiota.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Pedro A. Dimitriu ◽  
Brandon Iker ◽  
Kausar Malik ◽  
Hilary Leung ◽  
W. W. Mohn ◽  
...  

ABSTRACT Despite recognition that biogeography and individuality shape the function and composition of the human skin microbiome, we know little about how extrinsic and intrinsic host factors influence its composition. To explore the contributions of these factors to skin microbiome variation, we profiled the bacterial microbiomes of 495 North American subjects (ages, 9 to 78 years) at four skin surfaces plus the oral epithelium using 16S rRNA gene amplicon sequencing. We collected subject metadata, including host physiological parameters, through standardized questionnaires and noninvasive biophysical methods. Using a combination of statistical modeling tools, we found that demographic, lifestyle, and physiological factors collectively explained 12 to 20% of the variability in microbiome composition. The influence of health factors was strongest on the oral microbiome. Associations between host factors and the skin microbiome were generally dominated by operational taxonomic units (OTUs) affiliated with the Clostridiales and Prevotella. A subset of the correlations between microbial features and host attributes were site specific. To further explore the relationship between age and the skin microbiome of the forehead, we trained a Random Forest regression model to predict chronological age from microbial features. Age was associated mostly with two mutually coexcluding Corynebacterium OTUs. Furthermore, skin aging variables (wrinkles and hyperpigmented spots) were independently correlated to these taxa. IMPORTANCE Many studies have highlighted the importance of body site and individuality in shaping the composition of the human skin microbiome, but we still have a poor understanding of how extrinsic (e.g., lifestyle) and intrinsic (e.g., age) factors influence its composition. We characterized the bacterial microbiomes of North American volunteers at four skin sites and the mouth. We also collected extensive subject metadata and measured several host physiological parameters. Integration of host and microbial features showed that the skin microbiome was predominantly associated with demographic, lifestyle, and physiological factors. Furthermore, we uncovered reproducible associations between chronological age, skin aging, and members of the genus Corynebacterium. Our work provides new understanding of the role of host selection and lifestyle in shaping skin microbiome composition. It also contributes to a more comprehensive appreciation of the factors that drive interindividual skin microbiome variation.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
J. Le Luyer ◽  
Q. Schull ◽  
P. Auffret ◽  
P. Lopez ◽  
M. Crusot ◽  
...  

Abstract Background Tenacibaculum maritimum is a fish pathogen known for causing serious damage to a broad range of wild and farmed marine fish populations worldwide. The recently sequenced genome of T. maritimum strain NCIMB 2154T provided unprecedented information on the possible molecular mechanisms involved in the virulence of this species. However, little is known about the dynamic of infection in vivo, and information is lacking on both the intrinsic host response (gene expression) and its associated microbiota. Here, we applied complementary omic approaches, including dual RNAseq and 16S rRNA gene metabarcoding sequencing using Nanopore and short-read Illumina technologies to unravel the host–pathogen interplay in an experimental infection system using the tropical fish Platax orbicularis as model. Results We showed that the infection of the host is characterised by an enhancement of functions associated with antibiotic and glucans catabolism functions but a reduction of sulfate assimilation process in T. maritimum. The fish host concurrently displays a large panel of immune effectors, notably involving innate response and triggering acute inflammatory response. In addition, our results suggest that fish activate an adaptive immune response visible through the stimulation of T-helper cells, Th17, with congruent reduction of Th2 and T-regulatory cells. Fish were, however, largely sensitive to infection, and less than 25% survived after 96 hpi. These surviving fish showed no evidence of stress (cortisol levels) or significant difference in microbiome diversity compared with controls at the same sampling time. The presence of T. maritimum in resistant fish skin and the total absence of any skin lesions suggest that these fish did not escape contact with the pathogen, but rather that some mechanisms prevented pathogens entry. In resistant individuals, we detected up-regulation of specific immune-related genes differentiating resistant individuals from controls at 96 hpi, which suggests a possible genomic basis of resistance, although no genetic variation in coding regions was found. Conclusion Here we focus in detail on the interplay between common fish pathogens and host immune response during experimental infection. We further highlight key actors of defence response, pathogenicity and possible genomic bases of fish resistance to T. maritimum.


Sign in / Sign up

Export Citation Format

Share Document