scholarly journals The changes of microbial diversity and flavor compounds during the fermentation of millet Huangjiu, a traditional Chinese beverage

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262353
Author(s):  
Yi Yan ◽  
Haiyan Chen ◽  
Leping Sun ◽  
Wei Zhang ◽  
Xin Lu ◽  
...  

Huangjiu is a national alcoholic beverage in China. Millet has congenital advantages in development and utilization of nutrient. Brewing Huangjiu with millet can increase the value of millet. Microbial community plays crucial roles in millet Huangjiu fermentation. Flavor compounds reflect the quality and health function of Huangjiu. The flavor compounds of Huangjiu are complex and their formation is closely associated with microorganisms, but the relationship between them during fermentation has been unknown. In this research, this relationship during millet Huangjiu fermentation were deeply investigated. Totally 86 volatile compounds were detected. Bacillus, Weissella, Paenibacillus, Klebsiella, Prevotella was investigated as the dominant microbes through high-throughput sequencing. 537 correlations between major flavor compounds and microbes were established to reflect the dynamic change during millet Huangjiu fermentation. The top five dominant genus of flavor producing microbes were Chryseobacterium, Sporolactobacillus, Psychrobacter, Sphingobium and Anoxybacillus. The content of malic acid and citric acid was gradually improved all through the millet Huangjiu fermentation. Malic acid and citric acid generated from millet Huangjiu fermentation shows healthy properties as liver protection and eliminating fatigue. Our research provides essential information on microbial community succession and the flavor formation during millet Huangjiu fermentation, and beneficial for development of Huangjiu products.

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 967
Author(s):  
Chuiyun Tang ◽  
Juan Zhong ◽  
Ying Lv ◽  
Xingyu Liu ◽  
Yongbin Li ◽  
...  

Bacillus sp. is widely used in the remediation of uranium-contaminated sites. However, little is known about the competitive process of microbial community in the environment during bioremediation. The bioremediation of uranium tailings using Bacillus sp. was explored, and the bacterial community was analyzed by high-throughput sequencing at different stages of remediation. Bacillus sp. reduced the leaching of uranium from uranium tailings. The lowest uranium concentration was 17.25 μg/L. Alpha diversity revealed that the abundance and diversity of microorganisms increased with the extension of the culture time. The microbial abundance and diversity were higher in the treatment group than in the control group. The dominant species at the phyla level were Firmicutes and Proteobacteria in the uranium tailings environment, whereas the phylum of Proteobacteria was significantly increased in the treatment group. Based on the genus level, the proportions of Arthrobacter, Rhodococcus and Paenarthrobacter decreased significantly, whereas those of Clostridium sp., Bacillus and Pseudomonas increased dramatically. Hence, the remediation of uranium contamination in the environment was due to the functional microorganisms, which gradually became the dominant strain in the treatment, such as Desulfotomaculum, Desulfosporporosinus, Anaerocolumna, Ruminiclostridium and Burkholderia. These findings provided a promising outlook of the potential for remediation strategies of soil contaminated by uranium. The dynamic characteristics of the microbial community are likely to provide a foundation for the bioremediation process in practice.


2020 ◽  
Author(s):  
Yan Xu ◽  
Junfeng Niu ◽  
Lijun Chen ◽  
Xiaoqiang Wu ◽  
Zhongmin Dong ◽  
...  

Abstract Background Atractylodes lancea is a traditional Chinese medicine, which typically requires more than 3–4 years of continuous cropping to obtain the underground medicinal components. With continuous cropping years, the quality and yields of A. lancea medicinal materials decrease, while pests and diseases increase. These aspects are intimately correlated with rhizospheric microorganisms. Methods This research paper employed high-throughput sequencing for its detection in soil that was cultivated for three years and never cultivated to clarify the relationship between the microbial diversity of the rhizosphere and continuous A. lancea cropping. Results The rhizosphere microbial community was altered following the continuous cropping of A. lancea. The bacterial diversity and richness were observed to decrease, while the fungal community diversity increased, and richness decreased. The total OUTs of the soil bacteria and fungi of unplanted and planted A. lancea were 59.58% and 37.65%, respectively. At the phylum level, the relative abundance of Proteobacteria, Gemmatimonadetes, Acidobacteria and Chloroflexi decreased, whereas the relative abundance of Mortierellomycota increased. At the genus level, Bradyrhizobium, Striaticonidium, Dactylonectria, Sphingomonas, Burkholderiaceae, Rhodanobacter, Arthrobacter, Scleroderma, Mortierella and Penicillium were significantly different between the two sample groups. Conclusions Our results revealed that following the cultivation of A. lancea, the rhizospheric microbial community was altered. This study preliminarily determined the


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
María-Eugenia DeCastro ◽  
Michael P. Doane ◽  
Elizabeth Ann Dinsdale ◽  
Esther Rodríguez-Belmonte ◽  
María-Isabel González-Siso

AbstractIn the present study we investigate the microbial community inhabiting As Burgas geothermal spring, located in Ourense (Galicia, Spain). The approximately 23 Gbp of Illumina sequences generated for each replicate revealed a complex microbial community dominated by Bacteria in which Proteobacteria and Aquificae were the two prevalent phyla. An association between the two most prevalent genera, Thermus and Hydrogenobacter, was suggested by the relationship of their metabolism. The high relative abundance of sequences involved in the Calvin–Benson cycle and the reductive TCA cycle unveils the dominance of an autotrophic population. Important pathways from the nitrogen and sulfur cycle are potentially taking place in As Burgas hot spring. In the assembled reads, two complete ORFs matching GH2 beta-galactosidases were found. To assess their functional characterization, the two ORFs were cloned and overexpressed in E. coli. The pTsbg enzyme had activity towards o-Nitrophenyl-β-d-galactopyranoside (ONPG) and p-Nitrophenyl-β-d-fucopyranoside, with high thermal stability and showing maximal activity at 85 °C and pH 6, nevertheless the enzyme failed to hydrolyze lactose. The other enzyme, Tsbg, was unable to hydrolyze even ONPG or lactose. This finding highlights the challenge of finding novel active enzymes based only on their sequence.


2021 ◽  
Vol 9 (2) ◽  
pp. 211
Author(s):  
Jie Gao ◽  
Miao Liu ◽  
Sixue Shi ◽  
Ying Liu ◽  
Yu Duan ◽  
...  

In this study, we analyzed microbial community composition and the functional capacities of degraded sites and restored/natural sites in two typical wetlands of Northeast China—the Phragmites marsh and the Carex marsh, respectively. The degradation of these wetlands, caused by grazing or land drainage for irrigation, alters microbial community components and functional structures, in addition to changing the aboveground vegetation and soil geochemical properties. Bacterial and fungal diversity at the degraded sites were significantly lower than those at restored/natural sites, indicating that soil microbial groups were sensitive to disturbances in wetland ecosystems. Further, a combined analysis using high-throughput sequencing and GeoChip arrays showed that the abundance of carbon fixation and degradation, and ~95% genes involved in nitrogen cycling were increased in abundance at grazed Phragmites sites, likely due to the stimulating impact of urine and dung deposition. In contrast, the abundance of genes involved in methane cycling was significantly increased in restored wetlands. Particularly, we found that microbial composition and activity gradually shifts according to the hierarchical marsh sites. Altogether, this study demonstrated that microbial communities as a whole could respond to wetland changes and revealed the functional potential of microbes in regulating biogeochemical cycles.


2021 ◽  
Author(s):  
Yanbo Liu ◽  
Mengxiao Sun ◽  
Pei Hou ◽  
Wenya Wang ◽  
Xiangkun Shen ◽  
...  

Abstract In this study, the pit mud used in manufacturing Taorong-type Baijiu was collected from the upper, middle, lower and bottom layers of pits in Henan Yangshao Liquor Co., LTD. Besides, high-throughput sequencing (HTS) technology was adopted to analyze the microbial community structure of the pit mud. In addition, the volatile compounds in the pit mud were subjected to preliminarily qualitative analysis through headspace-solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The results of HTS demonstrated that there were 5, 3, 5 and 5 dominant bacterial phyla (including 11, 11, 9 and 8 dominant bacterial genera) and 3, 3, 3 and 3 dominant fungal phyla (including 4, 7, 7 and 5 dominant fungal genera) in the pit mud from F-S (upper), G-Z (middle), H-X (lower) and I-D (bottom), respectively. The qualitative analysis results of volatile compounds demonstrated that a total of 78 kinds of volatile compounds were detected in the pit mud, including 46, 45, 39 and 49 kinds in the pit mud from F-S, G-Z, H-X and I-D, respectively. Ester and acid were the two main components in the pit mud. Meanwhile, the correlation between microorganisms and main volatile compounds in the pit mud was analyzed. Moreover, Lentimicrobium, Syner-01 and Blvii28_wastewater-sludge group were found for the first time in the pit mud used for manufacturing Taorong-type Baijiu. The findings of this study could provide a theoretical foundation for improving the quality of pit mud and the flavor of Taorong-type Baijiu.


Sign in / Sign up

Export Citation Format

Share Document