Synthesis of Phosphorus-Containing Flame Retardant Monomer and Grafting of PET Fabrics via Electron Beam Irradiation

2020 ◽  
Vol 7 (4) ◽  
pp. 15-21
Author(s):  
Fang Ding ◽  
Shumin Zhang ◽  
Xuehong Ren ◽  
Jinping Guan

The flame retardant, diethyl methacryloylphosphoramidate (DMPP), was synthesized by the reaction of diethyl chlorophosphate with methacrylamide and triethylamine. DMPP was grafted onto polyethylene terephthalate (PET) fabrics by electron beam (EB) irradiation. scanning electron microscopy (SEM) images and Fourier transform-infrared (FT-IR) spectra showed that the flame retardant was successfully grafted on the surface of PET fabrics. The morphology of the grafted fabrics after burning showed a porous protective layer on the surface. The FT-IR spectra showed that the flame retardant generated a large amount of phosphorus oxygen-nitrogen compounds after burning. The limiting oxygen index (LOI) of the grafted fabrics increased with the increase of DMPP concentration. The char length of fabrics treated with DMPP after combustion decreased from 30 cm to 5.9 cm, which demonstrated effective flame resistance.

Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 127 ◽  
Author(s):  
Yu Sun ◽  
Yazhen Wang ◽  
Li Liu ◽  
Tianyuan Xiao

A 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) acrylate, (6-oxidodibenzo [c,e][1,2] oxaphosphinin-6-yl) methyl acrylate (DOPOAA), has been prepared. Copolymers of styrene (St) and DOPOAA were prepared by emulsion polymerization. The chemical structures of copolymers containing levels of DOPOAA were verified using Fourier transform infrared (FT-IR) spectroscopy and 1H nuclear magnetic resonance (1H-NMR) spectroscopy. The thermal properties and flame-retardant behaviors of DOPO-containing monomers and copolymers were observed using thermogravimetric analysis and micro calorimetry tests. From thermogravimetric analysis (TGA), it was found out that the T5% for decomposition of the copolymer was lower than that of polystyrene (PS), but the residue at 700 °C was higher than that of PS. The results from micro calorimetry (MCC) tests indicated that the rate for the heat release of the copolymer combustion was lower than that for PS. The limiting oxygen index (LOI) for combustion of the copolymer rose with increasing levels of DOPOAA. These data indicate that copolymerization of the phosphorus-containing flame-retardant monomer, DOPOAA, into a PS segment can effectively improve the thermal stability and flame retardancy of the copolymer.


2012 ◽  
Vol 427 ◽  
pp. 32-37 ◽  
Author(s):  
Zhou Zhao ◽  
Qing Shan Li ◽  
You Bo Di ◽  
Xin Wang ◽  
Wei Hong

The effects of chitosan as the antimicrobial on Protein viscose fibers were studied in this research. Antimicrobial flame-retardant protein viscose fibers are more efficient compared with original flame-retardant protein viscose fiber in improving the limiting oxygen index (LOI) of fiber. The effectiveness of the microstructure was investigated using scanning electron microscope (SEM).SEM images showed that the antimicrobial finishing and the softener were made in a same bath, which might be due to the formation of a protective layer or cross linking effect.


2020 ◽  
Vol 17 (10) ◽  
pp. 760-771
Author(s):  
Qirui Gong ◽  
Niangui Wang ◽  
Kaibo Zhang ◽  
Shizhao Huang ◽  
Yuhan Wang

A phosphaphenanthrene groups containing soybean oil based polyol (DSBP) was synthesized by epoxidized soybean oil (ESO) and 9,10-dihydro-oxa-10-phosphaphenanthrene-10-oxide (DOPO). Soybean oil based polyol (HSBP) was synthesized by ESO and H2O. The chemical structure of DSBP and HSBP were characterized with FT-IR and 1H NMR. The corresponding rigid polyurethane foams (RPUFs) were prepared by mixing DSBP with HSBP. The results revealed apparent density and compression strength of RPUFs decreased with increasing the DSBP content. The cell structure of RPUFs was examined by scanning electron microscope (SEM) which displayed the cells as spherical or polyhedral. The thermal degradation and flame retardancy of RPUFs were investigated by thermogravimetric analysis, limiting oxygen index (LOI), and UL 94 vertical burning test. The degradation activation energy (Ea) of first degradation stage reduced from 80.05 kJ/mol to 37.84 kJ/mol with 80 wt% DSBP. The RUPF with 80 wt% DSBP achieved UL94 V-0 rating and LOI 28.3. The results showed that the flame retardant effect was mainly in both gas phase and condensed phase.


2017 ◽  
Vol 48 (1) ◽  
pp. 87-118 ◽  
Author(s):  
MD Teli ◽  
Pintu Pandit

As far as the value addition of textile is concerned, flame retardancy of textile materials is considered to be one of the most important properties in textile finishing by both industries as well as academic researchers. Flame-retardant property with thermal stability was imparted to cotton by using green coconut ( Cocos nucifera Linn) shell extract, a natural waste source of coconut. Coconut shell extract was analyzed by high-performance liquid chromatography, Fourier transform infrared spectroscopy, energy-dispersive spectrometry and its phytochemical analysis was also carried out. The coconut shell extract (acidic after extraction) was applied in three different pH (acidic, neutral, and alkaline) conditions to the cotton fabric. Flame-retardant properties of the untreated and the treated cotton fabrics were analyzed by limiting oxygen index and vertical flammability. The study showed that all the treated fabrics had good flame resistance property compared to that of the untreated fabric. The limiting oxygen index value was found to increase by 72.2% after application of the coconut shell extract from alkaline pH. Pyrolysis and char formation behavior of the concerned fabrics were studied using thermogravimetric analysis and differential scanning calorimetric analysis in a nitrogen atmosphere. The physicochemical composition of the untreated and coconut shell extract treated cotton fabrics were analyzed by attenuated total reflection–Fourier transform infrared, scanning electron microscope, and energy-dispersive X-ray spectroscopy. Also, treated cotton fabric showed natural brown color and antibacterial property against both Gram-positive and Gram-negative bacteria. The durability of the flame-retardant functionality to washing with soap solution has also been studied and reported in this paper.


2021 ◽  
Author(s):  
Kaihao Wang ◽  
Shuheng Wang ◽  
Dan Meng ◽  
Dong Chen ◽  
Chenzhong Mu ◽  
...  

Abstract For the sake of direct using on the built wooden buildings, a green flame resistance coating comprising sodium polysilicate (SPS) and boric acid was prepared. With weight gain of only 10 wt.%, the treated wood sample (SPS/B-wood) performed improved limiting oxygen index value of 40.3% and passed the V-0 rating in UL-94 test. Additionally, the total heat release, total smoke production and peak carbon monoxide production of SPS/B-wood sample were decreased by 24.5%, 36.0% and 59.4% respectively, compared with that of control wood sample. The residue of SPS/B-wood sample was increased to 54.0% from 18.4% of control wood sample at 800oC in the thermogravimetry analysis. The flame retardant mechanism was suggested that SPS and boric acid formed Si-O-B and Si-O-Si contained structures, isolating the heat and smoke transfer during wood combustion. Notably, NaOH, introduced by the SPS/B coating, catalyzed the lignin to form compact and high-quality char. To conclude, this low-cost and easily-operated coating has a promising future utilizing in the villages with dense wood buildings.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1575
Author(s):  
Huong Nguyen Thi ◽  
Khanh Vu Thi Hong ◽  
Thanh Ngo Ha ◽  
Duy-Nam Phan

Cotton fabric treated by Pyrovatex CP New (PCN) and Knittex FFRC (K-FFRC) using the Pad-dry-cure method showed an excellent fire-retardant effect. However, it needed to be cured at high temperatures for a long time leading to a high loss of mechanical strength. In this study, atmospheric-pressure dielectric barrier discharge (APDBD) plasma was applied to the cotton fabric, which then was treated by flame retardants (FRs) using the pad–dry-cure method. The purpose was to have a flame-retardant cotton fabric (limiting oxygen index (LOI) ≥ 25) and a mechanical loss of the treated fabric due to the curing step as low as possible. To achieve this goal, 10 experiments were performed. The vertical flammability characteristics, LOI value and tensile strength of the treated fabrics were measured. A response model between the LOI values of the treated fabric and two studied variables (temperature and time of the curing step) was found. It was predicted that the optimal temperature and time-to-cure to achieve LOI of 25 was at 160 °C for 90 s, while the flame-retardant treatment process without plasma pretreatment, was at 180 °C and 114 s. Although the curing temperature and the time have decreased significantly, the loss of mechanical strength of the treated fabric is still high. The tensile strength and scanning electron microscopy (SEM) images of the fabric after plasma activation show that the plasma treatment itself also damages the mechanical strength of the fabric. X-ray photoelectron spectroscopy (XPS) spectra of the fabric after plasma activation and energy-dispersive spectroscopy (EDS) analysis of the flame retardant-treated (FRT) fabric clarified the role of plasma activation in this study.


2019 ◽  
pp. 152808371988181
Author(s):  
Ying Liu ◽  
Li Zhou ◽  
Fang Ding ◽  
Shanshan Li ◽  
Rong Li ◽  
...  

In this study, a novel flame-retardant diethyl methacryloylphosphoramidate containing phosphorus and nitrogen was synthesized and characterized by Fourier transform infrared and nuclear magnetic resonance. The synthesized compound was grafted onto cotton fabrics using electron beam irradiation and pad dry cure processes. Scanning electron microscope and X-ray photoelectron spectroscopy were used to characterize the surfaces of the modified cotton fabrics to confirm that diethyl methacryloylphosphoramidate was grafted on cotton fabrics successfully. Both electron beam–cotton and pad dry cure–cotton exhibited efficient flame retardancy which was proved by limiting oxygen index and vertical flammability test. Thermogravimetric analysis results showed that both electron beam-cotton and pad dry cure–cotton degraded at lower temperature and produced higher yields at 600℃. The tensile loss of electron beam–cotton was lower than that of pad dry cure–cotton, and within the acceptable range in flame retardant finishing.


2020 ◽  
Vol 977 ◽  
pp. 102-107
Author(s):  
Yu Lei Zheng ◽  
Shuang Chen ◽  
Jia Hui Wang ◽  
Ru Xiao

Polyamide 66 (PA66) benefits from excellent mechanical properties and good chemical resistance, which enabled wide application of this material in various industrial fields; however, it suffers from high flammability. Generally, preparation of a flame retardant PA from a reactive flame retardant involves a two-step process. In this study, the flame retardant PA66s (FRPA66s) are synthesized via a one-pot melt copolycondensation route by using a reactive phosphorus-containing flame retardant (FR-B). Then, molecular weight, some mechanical and thermal properties along with flame retardant properties of FRPA66s were investigated by gel permeation chromatography (GPC), instron material testing, differential scanning calorimetry (DSC), thermogravimetry (TG) analysis, vertical burning test (UL 94), and limiting oxygen index test (LOI) techniques. The experimental results confirmed that FRPA66s synthesized by the one-pot method have very similar properties compared to those obtained via the two-step process. Moreover, the prepared materials showed good non-flammability behavior with limiting oxygen index value of over 30% and a vertical burning test result of V-0 rating.


2019 ◽  
Vol 9 (7) ◽  
pp. 1491
Author(s):  
Ruixia Li ◽  
Kaiwei Zhang ◽  
Jiahui Wu ◽  
Wenjuan Liu

In order to analyze the effect of flame retardant and warm mix asphalt (WMA) additives-Sasobit on the flame-retardant performance and pavement performance of asphalt binder, the limiting oxygen index test, conventional performance test, and Superpave evaluation index tests were performed on asphalt binders in the study. The test results show that flame retardant can effectively improve the flame resistance of asphalt binder, while Sasobit has a certain combustion-supporting effect. Therefore, when warm-mixed flame-retardant technology is applied, the concentration of Sasobit should be controlled appropriately. These two modifiers can significantly enhance the high-temperature performance of asphalt binder, but both of them have a slight negative influence on the low-temperature cracking resistance. Sasobit can substantially reduce the high-temperature viscosity of asphalt binder, which helps to improve the construction workability of asphalt binder, while the flame retardant adversely affects the viscosity reduction effect of Sasobit to a certain extent, but the overall impact is not large.


e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 235-243 ◽  
Author(s):  
Lin Liu ◽  
Rui Lv

AbstractA DOPO (9,10-dihydro-9-oxa-10-phosphaphen-anthrene-10-oxide)-based halogen-free flame retardant (ODOPM-CYC) was synthesized and incorporated in rigid polyurethane foam (RPUF). The structure of ODOPM-CYC was characterized by Fourier transform infrared spectra (FTIR), 1H NMR and 31P NMR. The effects of ODOPM-CYC on the flame resistance, mechanical performances, thermal properties and cell structure of RPUF were also investigated. The results showed that the incorporation of ODOPM-CYC strikingly enhanced flame retardant properties of RPUF. The flame retarded RPUF acquired a limiting oxygen index (LOI) value of 26% and achieved UL-94 V-0 rating with the phosphorus content of 3 wt%. The smoke production rate (SPR) also showed an obvious decrease and total smoke release (TSR) was 39.8% lower than that of neat RPUF. Besides, the results demonstrated that the incorporation of ODOPM-CYC provided RPUF better thermal stability but did not show any obvious influence on its thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document