scholarly journals Microstructural and Equilibrium Adsorption Study of the System of Waste Foundry Molding Sand/Cu (II) Ions

2016 ◽  
Vol 61 (4) ◽  
pp. 1805-1812
Author(s):  
A. Strkalj ◽  
Z. Glavas ◽  
L. Slokar

Abstract This paper deals with the waste foundry molding sand which originally comes from the casting production. Adsorption of Cu (II) ions on the waste foundry molding sand was studied. Experimental data were processed using adsorption isotherms. Obtained results show that the experimental data are best described by the Langmuir isotherm. The following adsorption capacities are obtained: 7.153 mg/g to 293 K, 8.403 mg/g at 333 K and 9.208 mg/g at 343 K. The kinetics and thermodynamics of the process were analysed. The obtained results indicate that the adsorption process takes place according to the pseudo second order kinetic model with the following constants: 0.438 g/mg min at 293 K, 0.550 g/mg min at 333 K and 1.872 g/mg min at 343 K. The following values of ΔG° were obtained: − 95.49 J/mol at 293 K, − 736.99 J/mol at 333 K and − 1183.46 J/mol at 343 K. The value of ΔH° is − 4.16 kJ/mol and the value of ΔS° is 15.17 J/molK. These results were confirmed by microscopic examinations. The results indicate that the adsorption process of Cu (II) ions on waste foundry molding sand is possible. Results of microscopic examinations show the homogeneity of the surface, which is proof of the chemisorption. Cu (II) ions on the surface of the waste foundry molding sand were detected after adsorption by EDS analysis, which proves the existence of the adsorption process.

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 282
Author(s):  
Matej Šuránek ◽  
Zuzana Melichová ◽  
Valéria Kureková ◽  
Ljiljana Kljajević ◽  
Snežana Nenadović

In this study, the removal of nickel (Ni(II)) by adsorption from synthetically prepared solutions using natural bentonites (Lieskovec (L), Hliník nad Hronom (S), Jelšový Potok (JP), and Stará Kremnička (SK)) was investigated. All experiments were carried out under batch processing conditions, with the concentration of Ni(II), temperature, and time as the variables. The adsorption process was fast, approaching equilibrium within 30 min. The Langmuir maximum adsorption capacities of the four bentonite samples used were found to be 8.41, 12.24, 21.79, and 21.93 mg g–1, respectively. The results best fitted the pseudo-second-order kinetic model, with constant rates in a range of 0.0948–0.3153 g mg–1 min. The effect of temperature was investigated at temperatures of 20, 30, and 40 °C. Thermodynamic parameters, including standard enthalpy (ΔH0), Gibbs energy (ΔG0), and standard entropy (ΔS0), were calculated. The adsorption of Ni(II) by bentonite samples was an endothermic and spontaneous process. These results indicated that, of the bentonite samples used, the natural bentonites from JP and SK were most suitable for the removal of nickel from synthetically prepared solutions.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3575-3595
Author(s):  
Wanting Li ◽  
Ruifeng Shan ◽  
Yuna Fan ◽  
Xiaoyin Sun

Desethyl-atrazine (DEA) is a metabolite of atrazine that exerts a considerable influence on the environment. In this study, tall fescue biochar was prepared by pyrolysis at 500 °C, and batch experiments were conducted to explore its effect on the adsorption behavior of DEA in red soil, brown soil, and black soil. The addition of biochar increased the equilibrium amount of DEA adsorption for the three soil types. A pseudo-second-order kinetic model most closely fit the DEA adsorption kinetics of the three soils with and without biochar, with a determination coefficient (R2) of 0.962 to 0.999. The isothermal DEA adsorption process of soils with and without biochar was optimally described by the Freundlich and Langmuir isothermal adsorption models with R2 values of 0.98 and above. The DEA adsorption process in the pristine soil involved an exothermic reaction, which became an endothermic reaction after the addition of biochar. Partitioning was dominant throughout the entire DEA adsorption process of the three pristine soils. Conversely, in soils with biochar, surface adsorption represented a greater contribution toward DEA adsorption under conditions of low equilibrium concentration. The overall results revealed that the tall fescue biochar was an effective adsorbent for DEA polluted soil.


2020 ◽  
Vol 82 (10) ◽  
pp. 2159-2167
Author(s):  
Ru-yi Zhou ◽  
Jun-xia Yu ◽  
Ru-an Chi

Abstract Double functional groups modified bagasse (DFMBs), a series of new zwitterionic groups of carboxyl and amine modified adsorbents, were prepared through grafting tetraethylenepentamine (TEPA) onto the pyromellitic dianhydride (PMDA) modified bagasse using the DCC/DMAP method. DFMBs' ability to simultaneously remove basic magenta (BM, cationic dye) and Congo red (CR, anionic dye) from aqueous solution in single and binary dye systems was investigated. FTIR spectra and Zeta potential analysis results showed that PMDA and TEPA were successfully grafted onto the surface of bagasse, and the ratio of the amount of carboxyl groups and amine groups was controlled by the addition of a dosage of TEPA. Adsorption results showed that adsorption capacities of DFMBs for BM decreased while that for CR increased with the increase of the amount of TEPA in both single and binary dye systems, and BM or CR was absorbed on the modified biosorbents was mainly through electrostatic attraction and hydrogen bond. The adsorption for BM and CR could reach equilibrium within 300 min, both processes were fitted well by the pseudo-second-order kinetic model. The cationic and anionic dyes removal experiment in the binary system showed that DMFBs could be chosen as adsorbents to treat wastewater containing different ratios of cationic and anionic dyes.


2010 ◽  
Vol 171-172 ◽  
pp. 41-44
Author(s):  
Xiao Cun Xiao ◽  
Gai Xia Fang ◽  
Er Li Zhao ◽  
Lv Bin Zhai ◽  
Jun Shuai Shi

The objective of this study is to assess the environmentaly friendly Ni(II) adsorption from synthetic wastewater using Pseudomonas alcaligenes biomass (PA-2). The ability of PA-2 to remove the Ni(II) ions was investigated by using batch biosorption procedure. The effects such as pH, dosage of biosorbent, Ni(II) initial concentration and sorbate–sorbent contact time and agitating speed on the adsorption capacities of PA-2 were studied. Biosorption equilibriums were rapidly established in about 60 min and the adsorption kinetics followed the pseudo-second order kinetic model. The maximum Ni(II) adsorption capacity determined from Langmuir isotherm were 82.23 mg/g PA-2 at pH 5.0, at 25±2°C and shaker speed 150 rpm, respectively. The carboxyl , hydroxyl and amino groups of the PA-2 were involved in chemical interaction with the Ni(II) ions depicted by Fourier transform infrared spectroscopic (FTIR) results. The study points to the potential of new use of Pseudomonas alcaligenes biomass as an effective biosorbent for the removal of Ni(II) and from environmental and industrial wastewater.


2020 ◽  
Vol 10 (9) ◽  
Author(s):  
G. B. Adebayo ◽  
H. I. Adegoke ◽  
Sidiq Fauzeeyat

Abstract Hexavalent chromium was adsorbed from aqueous solution with three prepared and characterized adsorbents, namely goethite (G), activated carbon (AC) and their composite (GAC). The goethite particle was synthesized using the precipitation methods, and activated carbon was prepared from the stem bark of Daniellia oliveri tree and composite in a ratio of 1:5 goethite–activated carbon. The adsorption capacities of G, AC and GAC for Cr(VI) are 6.627, 5.455 and 6.354 mg/g with 0.02 g adsorbent within contact time of 60, 180 and 30 min for G, AC and GAC, respectively, for Cr(VI) adsorption at optimum pH of 3. The isotherm studied was best explained by Langmuir adsorption isotherm and fitted with the pseudo-second-order kinetic model. Desorption studies showed that 1.0 M HNO3 was a better desorbing agent than 0.1 M HNO3, 0.1 M HCl and 1.0 M HCl. Chromium was most desorbed (94.60% in Cr//G using 1 M HNO3). The result obtained revealed that goethite and activated carbon produced are favourable adsorbents and the composite of the two adsorbents gives a more favourable, economical and affordable adsorbent for the clean-up of heavy metal contamination.


2020 ◽  
Vol 81 (6) ◽  
pp. 1114-1129 ◽  
Author(s):  
Jun Wang ◽  
Qinglong Xie ◽  
Ao Li ◽  
Xuejun Liu ◽  
Fengwen Yu ◽  
...  

Abstract In this study, an efficient route to synthesizing polyethyleneimine-modified ultrasonic-assisted acid hydrochar (PEI-USAH) is developed and reported. Ultrasonic irradiation technique was used as surface modification method to shorten the crosslinking reaction for hydrochar and polyethyleneimine (PEI). The PEI-USAH showed an excellent adsorption capacity for Cr(VI) from aqueous solution. The physicochemical properties of this PEI-modified adsorbent were comparatively characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller analysis and CNHS analysis. The effects of contact time, initial pH, and biosorbent dose on adsorption capacities were investigated. The batch adsorption experiments showed that PEI-USAH possessed the maximum adsorption capacities of 94.38 mg/g and 330.84 mg/g for initial Cr(VI) concentration of 100 mg/L and 500 mg/L, respectively. Furthermore, this adsorption process could be fitted to Langmuir adsorption and described by the pseudo second order kinetic model. Based on the above findings, PEI-USAH could be used as a potential adsorbent for removal of Cr(VI) from wastewater.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Qianlan Wu ◽  
Yang Xian ◽  
Zilin He ◽  
Qi Zhang ◽  
Jun Wu ◽  
...  

Abstract As a multifunctional material, biochar is considered a potential adsorbent for removing heavy metals from wastewater. Most biochars with high adsorption capacities have been modified, but this modification is uneconomical, and modifying biochar may cause secondary pollution. Thus, it is necessary to develop an efficient biochar without modification. In this study, spent P. ostreatus substrate and spent shiitake substrate were used as the raw materials to prepare biochar. Then, the physicochemical properties of the biochars and their removal efficiencies for Pb(II) were investigated. The results showed that the physicochemical properties (e.g., large BET surface area, small pore structure and abundant functional groups) contributed to the large adsorption capacity for Pb(II); the maximum adsorption capacities were 326 mg g−1 (spent P. ostreatus substrate-derived biochar) and 398 mg g−1 (spent shiitake substrate-derived biochar), which are 1.6–10 times larger than those of other modified biochars. The Pb(II) adsorption data could be well described by the pseudo-second-order kinetic model and the Langmuir model. This study provides a new method to comprehensively utilize spent mushroom substrates for the sustainable development of the edible mushroom industry.


2019 ◽  
Vol 80 (2) ◽  
pp. 329-338
Author(s):  
Xuan Wang ◽  
Yande Jing ◽  
Yongqiang Cao ◽  
Shuo Xu ◽  
Lidong Chen

Abstract In this study, biochar was prepared from Alternanthera philoxeroides (AP) under O2-limited condition at 350 °C (LB) and 650 °C (HB) and treated with aging by HNO3/H2SO4 oxidation. Structural changes of the biochar after aging treatment and the treatment's effect on Pb(II) absorption were explored. The results showed that oxygen-containing functional groups, aromatic structure and surface area of the biochar increased after the aging treatment. However, the integrity of the tubular structure was broken into fragments. The adsorption process of Pb(II) was in accordance with the pseudo-second-order kinetic model and fitted by the Langmuir model. With the increase of pH, the adsorption capacities of Pb(II) increased gradually, and the adsorption effect was best at pH 5. The aged HB presented a decrease of the carboxyl group, which caused less adsorption capacity of Pb(II) than that of aged LB. The maximum adsorption capacities of Pb(II) on fresh biochar at 350 °C and 650 °C were 279.85 and 286.07 mg·g−1 and on aged biochar were 242.57 and 159.82 mg·g−1, respectively. The adsorption capacity of HB for Pb(II) was higher than that of LB, and the adsorption capacity of aged biochar for Pb(II) decreased obviously, which might be attributable to changes in physicochemical properties of biochar after the aging treatment.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 454 ◽  
Author(s):  
Aili Wang ◽  
Shuhui Li ◽  
Hou Chen ◽  
Ying Liu ◽  
Xiong Peng

This paper reports the successful construction of novel polymerizable ionic liquid microemulsions and the in situ synthesis of poly(ionic liquid) adsorbents for the removal of Zn2+ from aqueous solution. Dynamic light-scattering data were used to confirm the polymerization media and to illustrate the effect of the crosslinker dosage on the droplet size of the microemulsion. FTIR and thermal analysis were employed to confirm the successful preparation of the designed polymers and characterize their thermostability and glass transition-temperature value. The optimization of the adsorption process indicates that the initial concentration of Zn2+, pH, adsorbent dosage and contact time affected the adsorption performance of poly(ionic liquid)s toward Zn2+. Furthermore, our research revealed that the adsorption process can be effectively described by the pseudo second-order kinetic model and the Freundlich isotherm model.


2017 ◽  
Vol 8 (4) ◽  
pp. 522-531
Author(s):  
A. Machrouhi ◽  
M. Farnane ◽  
A. Elhalil ◽  
R. Elmoubarki ◽  
M. Abdennouri ◽  
...  

Abstract Raw beetroot seeds (BS) and H3PO4 activated beetroot seeds (H3PO4-BS) were evaluate for their effectiveness in removing methylene blue (MB) and malachite green (MG) from aqueous solution. BS were carbonized at 500°C for 2 h, and then impregnated with phosphoric acid (phosphoric acid to BS ratio of 1.5 g/g). The impregnated BS were activated in a tubular vertical furnace at 450°C for 2 h. Batch sorption experiments were carried out under various parameters, such as solution pH, adsorbent dosage, contact time, initial dyes concentration and temperature. The experimental results show that the dye sorption was influenced by solution pH and it was greater in the basic range. The sorption yield increases with an increase in the adsorbent dosage. The equilibrium uptake was increased with an increase in the initial dye concentration in solution. Adsorption kinetic data conformed more to the pseudo-second-order kinetic model. The experimental isotherm data were evaluated by Langmuir, Freundlich, Toth and Dubinin–Radushkevich isotherm models. The Langmuir maximum monolayer adsorption capacities were 61.11 and 74.37 mg/g for MB, 51.31 and 213.01 mg/g for MG, respectively in the case of BS and H3PO4-BS. The thermodynamic parameters are also evaluated and discussed.


Sign in / Sign up

Export Citation Format

Share Document