scholarly journals Microstructure and Corrosion Resistance of Aluminium and Copper Composite Coatings Deposited by LPCS Method

2016 ◽  
Vol 61 (4) ◽  
pp. 1945-1952 ◽  
Author(s):  
M. Winnicki ◽  
M. Rutkowska-Gorczyca ◽  
A. Małachowska ◽  
T. Piwowarczyk ◽  
A. Ambroziak

Abstract The paper presents the study of microstructure and corrosion resistance of composite coatings (Al+Al2O3 and Cu+Al2O3) deposited by Low Pressure Cold Spraying method (LPCS). The atmospheric corrosion resistance was examined by subjecting the samples to cyclic salt spray and Kesternich test chambers, with NaCl and SO2 atmospheres, respectively. The selected tests allowed reflecting the actual working conditions of the coatings. The analysis showed very satisfactory results for copper coatings. After eighteen cycles, with a total time of 432 hours, the samples show little signs of corrosion. Due to their greater susceptibility to chloride ions, aluminium coatings have significant corrosion losses.

2018 ◽  
Vol 25 (03) ◽  
pp. 1850074
Author(s):  
YAN SHEN ◽  
PRASANTA K. SAHOO ◽  
YIPENG PAN

In order to enhance the corrosion resistance of mooring chain, the composite coatings are carried out on the surface of 22MnCrNiMo steel for mooring chain by double-pulsed electrodeposition technology using centrifugal force in the rotating device. The microstructure and anti-corrosion performance of the composite coatings have been investigated experimentally. This paper mainly focuses on the experimental work to determine the structural characteristics and corrosion resistance of composite coatings in the presence of nano-SiC. The results show that the presence of nano-SiC has a significant effect on the preparation of composite coating during the process. The surface of the coating becomes compact and smooth at a moderate concentration of nano-SiC particles. Furthermore, the best corrosion resistance of the composite coatings can be obtained when the concentration of nano-SiC particles is 2.0[Formula: see text]g.L[Formula: see text] after salt spray treatment.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 505
Author(s):  
Xinqiang Lu ◽  
Shouren Wang ◽  
Tianying Xiong ◽  
Daosheng Wen ◽  
Gaoqi Wang ◽  
...  

Two composite coatings, Zn65Al15Mg5ZnO15 and Zn45Al35Mg5ZnO15, were prepared by the cold spray technique and were found to be compact, with no pits or cracks, based on scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) investigations. The results of the neutral salt spray (NSS) and electrochemical tests showed that the two composite coatings possess a suitable corrosion performance. However, the Zn45Al35Mg5ZnO15 composite coatings were more corrosion resistant and allowed a better long-term stability. In addition, they were found to exhibit the best wear resistance and photocatalytic degradation efficiency.


Author(s):  
В.С. ФИЛОНИНА ◽  
К.В. НАДАРАИА ◽  
А.С. ГНЕДЕНКОВ ◽  
И.М. ИМШИНЕЦКИЙ ◽  
Д.В. МАШТАЛЯР ◽  
...  

Представлены результаты ускоренных климатических испытаний композиционных полимерсодержащих покрытий на сплаве алюминия АМг3. Выявлено положительное влияние импрегнированного в поры ПЭО-покрытия композиционного материала на смачиваемость и коррозионную стойкость исследуемых образцов в условиях долговременного воздействия соляного тумана. Наиболее высокую коррозионную стойкость продемонстрировали образцы с четырехкратным нанесением ультрадисперсного политетрафторэтилена. The results of accelerated climatic tests of composite polymer-containing coatings on the AMg3 aluminum alloy are presented in the paper. According to the results of the studies carried out, a positive effect of the penetrated composite material into the pores of a PEO-coating on the wettability and corrosion resistance of the test samples under conditions of long-term exposure to salt fog has been revealed. The highest corrosion resistance was demonstrated by samples with a fourfold (СС-4x) application of superdispersed polytetrafluoroethylene.


2020 ◽  
Vol 27 (09) ◽  
pp. 1950211
Author(s):  
XINQIANG LU ◽  
SHOUREN WANG ◽  
TIANYING XIONG ◽  
DAOSHENG WEN ◽  
GAOQI WANG ◽  
...  

Two kinds of composite coatings, Zn[Formula: see text]Al[Formula: see text]Mg5ZnO[Formula: see text] and Zn[Formula: see text]Al[Formula: see text]Mg5ZnO[Formula: see text], were prepared on steel matrix (Q235) by cold spraying. The Zn, Al, Mg, and ZnO in raw materials were calculated by percentage of mass. The morphology of the original coating was observed by scanning electron microscopy (SEM) and characterized by energy dispersive spectroscopy (EDS). It was found that the microstructures of Zn[Formula: see text]Al[Formula: see text]Mg5ZnO[Formula: see text] and Zn[Formula: see text]Al[Formula: see text]Mg5ZnO[Formula: see text] composite coatings prepared by cold spraying were compact without oxidation products, and the plastic deformation of powder particles was significant. The friction and wear test data of the two coatings showed that the Zn[Formula: see text]Al[Formula: see text]Mg5ZnO[Formula: see text] coating had longer-lasting protective properties and wear resistance under the same conditions. Neutral salt spray test (NSS) and electrochemical accelerated corrosion test were carried out on samples at different time periods. The results of samples’ corrosion microstructure and electrochemical curves showed that Zn[Formula: see text]Al[Formula: see text]Mg5ZnO[Formula: see text] and Zn[Formula: see text]Al[Formula: see text]Mg5ZnO[Formula: see text] have good electrochemical protection performance, and Zn[Formula: see text]Al[Formula: see text]Mg5ZnO[Formula: see text] coating has better protection effect.


2011 ◽  
Vol 239-242 ◽  
pp. 227-231
Author(s):  
Deng Xue Du ◽  
Zhi Peng Zhang ◽  
Lei Zhou

Ni-Cr films were electrodeposited from a nickel sulfate, chromium chloride and chromium sulfate bath. To avoid the poor adhesion and bad surface morphology of the secondary-co-deposition of Ni-Cr alloy films, H2O and DMF (volume ratio as 1:1) is used as solvent. Along with the alloy films growing thick, their surface apertures become larger correspondingly, which causes the hardness and corrosion resistance of the films becoming poor. For comparison, nanocrystalline Ni-Cr films with TiO2nanoparticles were obtained on the same condition. TiO2nanoparticles have an average size of 40 nm. The corrosion resistance of the Ni-Cr composite coatings were comparatively evaluated by salt spray test. It is found that the incorporation of TiO2particles enhances the microhardness and corrosion resistance of the coatings. The reason is that the nano-TiO2particles in the deposit effectively reduce the size of Ni and Cr crystals through grain refinement-strengthening and dispersion-strengthening effect. The observation results of scanning electron microscopy (SEM) indicated that the Ni-Cr films without dispersions of TiO2nanoparticles exhibited numerous large and deep crackles, however, the crackles of nano-TiO2Ni-Cr film distinctly became less.


2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
B. M. Praveen ◽  
T. V. Venkatesha

Nano sized TiO2particles were prepared by sol-gel method. TiO2nano particles were dispersed in zinc-nickel sulphate electrolyte and thin film of Zn-Ni-TiO2composite was generated by electrodeposition on mild steel plates. The effect of TiO2on the corrosion behavior and hardness of the composite coatings was investigated. The film was tested for its corrosion resistance property using electrochemical, weight loss, and salt spray methods. The paper revealed higher resistance of composite coating to corrosion. Microhardness of the composite coating was determined. Scanning electron microscope images and X-ray diffraction patterns of coating revealed its fine-grain nature. Average crystalline size of the composite coating was calculated. The anticorrosion mechanism of the composite coating was also discussed.


2017 ◽  
Vol 26 (8) ◽  
pp. 1935-1946 ◽  
Author(s):  
M. Winnicki ◽  
A. Baszczuk ◽  
M. Jasiorski ◽  
A. Małachowska

2013 ◽  
Vol 750-752 ◽  
pp. 2052-2056 ◽  
Author(s):  
Lu Miao ◽  
Ya Nan Wang ◽  
Yan Hui Li

By vacuum fusion sintering technique made different CeO2 addition Ni-WC composite coatings on 45 steel. Hardness, wear resistance property and corrosion resistance property of the Rare-earth Ni-WC composite coatings were measured and analyzed by Rockwell hardness tester,micro-hardness tester, friction wear testing machine and Salt spray corrosion box. The results showed that:The CeO2 content comes up to 0.75% of the coatings` hardness, wear resistance and corrosion resistance property better than those of other coatings.


2020 ◽  
Vol 993 ◽  
pp. 1075-1085
Author(s):  
Li Fan ◽  
Hai Yan Chen ◽  
Hai Liang Du ◽  
Yue Hou ◽  
Qian Cheng

Nickel-based composite coatings reinforced by spherical tungsten carbide were deposited on 42CrMo alloy steel using plasma transfer arc welding (PTAW) process. Their electrochemical corrosion properties in NaCl solution under atmospheric and high pressure were studied by polarization curve, electrochemical impedance spectroscopy. The corrosion and erosion resistance of the coatings were also investigated by salt spray corrosion and erosion corrosion tests. The results show that the self-corrosion potential of the composite coatings increased with the increase of tungsten carbide content, and the Cr element in Ni60 sample formed a stable and compact passivation film. Compared with corrosion at atmospheric pressure, the adsorption and penetration of Cl- on the coating surface enhanced due to the increase of Cl- activity under pressure, thereby to weaken the corrosion resistance. The Samples that passivated in salt spray environment, cannot completely hinder the corrosion of the coating, just only to slow down the corrosion. This study can provide theoretical basis for deep-sea oil drilling and production engineering equipment.


2008 ◽  
Vol 373-374 ◽  
pp. 256-259 ◽  
Author(s):  
Xian Guo Hu ◽  
Wen Ju Cai ◽  
Jiu Cong Wan ◽  
Yu Fu Xu ◽  
Xiao Jun Sun

The electroless nickel-phosphor coatings containing molybdenum disulfide nanoparticles were prepared and analyzed in this paper. The effects of incorporation of MoS2 into the Ni-P coating on the morphology of the coating surface and corrosion properties were also studied. Corrosion tests were conducted inside a salt spray box with NaCl solution (5.0 wt%). The corrosional surfaces were studied and analyzed through optical microscope, X-ray spectrometer (XRD) and scanning electron microscopy (SEM). The investigation on the relationship between heat-treatment and the corrosion resistance of the coatings showed that the corrosion resistance of the composite coating became worse because of the occurrence of transformation from non-crystalline to crystalline, and then increased the metastable intergradation of the composite coating. Meanwhile, the experimental results also showed that corrosion resistance of the coating containing MoS2 was higher than that of steel substrate. The corrosion mechanism of the composite coatings was mainly ascribed to the formation of micro-cell around the nanosized MoS2 particles, and the active ion like Cl- destroyed the surface film and induced the corrosion towards the inside part of coating.


Sign in / Sign up

Export Citation Format

Share Document