scholarly journals An Improved Theoretical Model of Cigarette Smoke Filtration across Mono-Segment Cellulose Acetate Filters

Author(s):  
Du Wen ◽  
Wen Jianhui ◽  
Peng Bing ◽  
Zhang Xiaobin ◽  
Xie Fuwei ◽  
...  

SummaryAn improved theoretical model was presented to predict the filtration efficiency of cigarette filters. Filtration equations of single fibers considering the interference of neighboring fibers were applied in the model. Cellulose acetate fibers in cigarette filters were approximated as cylinders. The fiber size was adjusted by its size projected on the flow field. The solid fraction of fibers in cigarette filters was recalculated using the size of the virtual cylinders. The varying flow velocity during smoking was taken into account when calculating the filtration efficiency. The effective hydrodynamic particle diameter of cigarette smoke was estimated to be 0.44 μm by the difference of filtration efficiencies under ISO and Health Canada Intense (HCI) smoking regimes. Filtration contributions due to diffusion, interception and inertial impaction were 62%, 32% and 6%, respectively, at a flow velocity of 0.38 m/s for particles of 0.44 μm diameter. The effect of inertial impaction was insignificant but not negligible under ISO smoking regime. The measured and predicted efficiencies of two cigarette samples were compared and satisfactory agreement was obtained. [Beitr. Tabakforsch. Int. 26 (2015) 232-240]

2018 ◽  
Vol 89 (15) ◽  
pp. 3137-3149 ◽  
Author(s):  
Joerg Ahne ◽  
Qinghai Li ◽  
Eric Croiset ◽  
Zhongchao Tan

Reported in this paper are the effects of tip-to-collector distance, voltage, deposition time and solution concentration on the fiber size distribution and filter quality factor of electrospun cellulose acetate (CA)-based nanofibers. Nanofibrous filter samples were produced by electrospinning in a laboratory setting. The CA solutions were prepared by diluting various concentrations of CA in a 2:1 (w:w) ratio of N,N-dimethylacetamide (concentration 10–20 wt.%). The electrospinning voltages ranged from 8–12 kV, with distances from 10–15 cm and deposition times of up to 30 minutes. The produced nanofibrous filter samples were then analyzed in terms of fiber size distribution and filter quality factor using nanosized sodium chloride particles ranging from 4–240 nm in diameter. The maximum filtration efficiency measured was 99.8% for filter samples obtained with an overall deposition time of 30 minutes. The maximum filter quality factor was 0.14 Pa−1 for a CA concentration of 20 wt.% and a tip-to-collector distance of 15 cm. The average fiber diameters of the fibers were between 175 and 890 nm, and CA concentrations below 15% led to the formation of beads.


Author(s):  
R. A. Crellin ◽  
G. O. Brooks ◽  
H. G. Horsewell

AbstractA ventilating filter for cigarettes has been developed which reduces the delivery of smoke constituents from the final two to three puffs. Since the normaI delivery for these three puffs can account for up to half the total particulate matter and nicotine delivered by the whole cigarette, usefuI reductions per cigarette can be produced. The ventilating filter consists of cellulose acetate tow wrapped in heat-shrinkable film and attached to a tobacco rod using perforated tipping paper. When the cigarette is smoked, the perforations remain closed by contact with the impermeable film until transfer of heat to the filter is sufficient to soften the filter tow and shrink the film. Ventilating air now enters the cigarette and reduces the smoke deliveries. The effectiveness of the ventilating filter is increased by using films which have a low shrink temperature, high shrink tension and a high degree of biaxiaI shrinkage. Increases in filter plasticiser level, tipping perforation area and puff volume improve the effectiveness of the ventilating filter but increases in cigarette paper porosity and tobacco butt length reduce the effectiveness


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 52
Author(s):  
Xiang He ◽  
Sijia Wang ◽  
Bingjian Zhang

Dew is a common but important phenomenon. Though water is previously considered to be a threat to earthen heritage sites, artificial dew is showing potential in relic preservation. A model of dew prediction on earthen sites will be essential for developing preventive protection methods, but studies of dew formation processes on relics are limited. In this study, a two parameter model is proposed. It makes approximations according to the features of earthen heritage sites, assuming that a thin and steady air layer exists close to the air–solid interface. This semi-theoretical model was based on calculations of the mass transfer process in the air layer, and was validated by simulations of laboratory experiments (R > 0.9) as well as field experiments. Additionally, a numerical simulation, performed by the commercial software COMSOL, confirmed that the difference between fitting parameter δ and the thickness of assumed mass transfer field was not significant. This model will be helpful in developing automatic environmental control systems for stabilizing water and soluble salts, thus enhancing preventive protection of earthen heritage sites.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Demissie Jobir Gelmecha ◽  
Ram Sewak Singh

AbstractIn this paper, the rigorous derivations of generalized coupled chiral nonlinear Schrödinger equations (CCNLSEs) and their modulation instability analysis have been explored theoretically and computationally. With the consideration of Maxwell’s equations and Post’s constitutive relations, a generalized CCNLSE has been derived, which describes the evolution of left-handed circularly polarized (LCP) and right-handed circularly polarized (RCP) components propagating through single-core nonlinear chiral fiber. The analysis of modulation instability in nonlinear chiral fiber has been investigated starting from CCNLSEs. Based on a theoretical model and numerical simulations, the difference on the modulation instability gain spectrum in LCP and RCP components through chiral fiber has been analyzed by considering loss and chirality into account. The obtained simulation results have shown that the loss distorts the sidebands of the modulation instability gain spectrum, while chirality modulates the gain for LCP and RCP components in a different manner. This suggests that adjusting chirality strength may control the loss, and nonlinearity simultaneously provides stable modulated pulse propagation.


2021 ◽  
Vol 30 (3) ◽  
pp. 109-126
Author(s):  
Laurent Poget ◽  
Catherine Goujon ◽  
Samuel Kleinhans ◽  
Serge Maeder ◽  
Jean-Pierre Schaller

Summary In order to assess robustness for the reduction of harmful and potentially harmful constituent (HPHC) levels generated by the Tobacco Heating System 2.2 (THS 2.2), a heated tobacco product, we compared the aerosol of this product with mainstream smoke from the 3R4F reference cigarette under different conditions of temperature and humidity. The desired climatic conditions were achieved by using an air-conditioning system coupled with the smoking-machine housing. Two extreme climatic conditions were selected, representing a “Hot and Dry” climate (30 °C and 35% relative humidity RH) and a “Hot and Very Humid” climate (30 °C and 75% RH). In addition, aerosol and smoke were generated using the standard conditions recognized for smoking-machine analyses of tobacco products (22 °C and 60% RH), which were close to the climatic conditions defined for “Subtropical and Mediterranean” environments (25 °C and 60% RH). The experimental conditions were chosen to simulate the use of THS 2.2 and cigarettes under extreme conditions of temperature and humidity. HeatSticks and cigarettes taken from freshly opened packs were subjected to short-term conditioning from two to a few more days under the same experimental conditions. We analyzed 54 HPHCs in THS 2.2 aerosol and 3R4F cigarette smoke, generated in accordance with the Health Canada Intense (HCI) standard, using modified temperature and humidity conditions for sample conditioning and machine-smoking experiments. We used a volume-adjusted approach for comparing HPHC reductions across the different climatic conditions investigated. Although a single puffing regimen was used, the total puff volume recorded for the 3R4F cigarette smoke varied due to the influence of temperature and humidity on combustion rate, which justified the use of a volume-adjusted approach. Volume-adjusted yields were derived from HPHC yields expressed in mass-per-tobacco stick normalized per total puff volume. The results indicated that, regardless of the considered climatic conditions, the HPHC levels investigated in THS 2.2 aerosol were reduced by at least 90%, on average, when compared with the concentrations in 3R4F cigarette mainstream smoke. This confirmed the robustness in performance for THS 2.2 to deliver reduced levels of HPHCs under the extreme climatic conditions investigated in this study. In order to further characterize the robustness of these reductions, the lowest reduction performance achieved for individual HPHCs across all climatic conditions was used to define the threshold for a robust reduction. The majority of the 54 HPHCs investigated in THS 2.2 aerosol showed more than 90% reduction. Calculations derived from nicotine-adjusted yields also confirmed robust reductions for all investigated HPHCs. The small differences in absolute reduction between the volume- and nicotine-adjusted approaches were predominantly attributed to a combination of the differences in both nominal nicotine deliveries and total puff volumes between THS 2.2 and 3R4F cigarettes; however, this did not influence the determination of robustness. Our findings confirm the value of this approach for assessing the robustness of a product’s performance under different climatic conditions.


2021 ◽  
Author(s):  
K. Zhou ◽  
H.R. Yi ◽  
Huliang Dai ◽  
H Yan ◽  
Z.L. Guo ◽  
...  

Abstract By adopting the absolute nodal coordinate formulation, a novel and general nonlinear theoretical model, which can be applied to solve the dynamics of combined straight-curved fluid-conveying pipes with arbitrary initially configurations and any boundary conditions, is developed in the current study. Based on this established model, the nonlinear behaviors of the cantilevered L-shaped pipe conveying fluid with and without base excitations are systematically investigated. Before starting the research, the developed theoretical model is verified by performing three validation examples. Then, with the aid of this model, the static deformations, linear stability, and nonlinear self-excited vibrations of the L-shaped pipe without the base excitation are determined. It is found that the cantilevered L-shaped pipe suffers from the static deformations when the flow velocity is subcritical, and will undergo the limit-cycle motions as the flow velocity exceeds the critical value. Subsequently, the nonlinear forced vibrations of the pipe with a base excitation are explored. It is indicated that the period-n, quasi-periodic and chaotic responses can be detected for the L-shaped pipe, which has a strong relationship with the flow velocity, excitation amplitude and frequency.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258191
Author(s):  
Scott Duncan ◽  
Paul Bodurtha ◽  
Syed Naqvi

Face coverings are a key component of preventive health measure strategies to mitigate the spread of respiratory illnesses. In this study five groups of masks were investigated that are of particular relevance to the SARS-CoV-2 pandemic: re-usable, fabric two-layer and multi-layer masks, disposable procedure/surgical masks, KN95 and N95 filtering facepiece respirators. Experimental work focussed on the particle penetration through mask materials as a function of particle diameter, and the total inward leakage protection performance of the mask system. Geometric mean fabric protection factors varied from 1.78 to 144.5 for the fabric two-layer and KN95 materials, corresponding to overall filtration efficiencies of 43.8% and 99.3% using a flow rate of 17 L/min, equivalent to a breathing expiration rate for a person in a sedentary or standing position conversing with another individual. Geometric mean total inward leakage protection factors for the 2-layer, multi-layer and procedure masks were <2.3, while 6.2 was achieved for the KN95 masks. The highest values were measured for the N95 group at 165.7. Mask performance is dominated by face seal leakage. Despite the additional filtering layers added to cloth masks, and the higher filtration efficiency of the materials used in disposable procedure and KN95 masks, the total inward leakage protection factor was only marginally improved. N95 FFRs were the only mask group investigated that provided not only high filtration efficiency but high total inward leakage protection, and remain the best option to protect individuals from exposure to aerosol in high risk settings. The Mask Quality Factor and total inward leakage performance are very useful to determine the best options for masking. However, it is highly recommended that testing is undertaken on prospective products, or guidance is sought from impartial authorities, to confirm they meet any implied standards.


ILR Review ◽  
2017 ◽  
Vol 72 (2) ◽  
pp. 355-381 ◽  
Author(s):  
Deepti Goel ◽  
Kevin Lang

This article highlights a specific mechanism through which social networks help in job search. The authors characterize the strength of a network by its likelihood of providing a job offer. Using a theoretical model, they show that the difference between wages in jobs found using networks versus those found using formal channels decreases as the network becomes stronger. The authors verify this result for recent immigrants to Canada for whom a strong network is captured by the presence of a “close tie.” Furthermore, structural estimates confirm that the presence of a close tie operates by increasing the likelihood of generating a job offer from the network rather than by altering the network wage distribution.


1988 ◽  
Vol 37 (3-4) ◽  
pp. 299-306 ◽  
Author(s):  
Gordon Allen

AbstractThe frequency of triplets in the U.S. white population may have reached an all-time low around 1964, at 78 sets per million deliveries. One-fourth of those were monozygotic as estimated by the difference method, or 18% by Bulmer's theoretical model. By 1983 the frequency of triplets had nearly doubled, the increase presumably occurring in dizygotic and trizygotic types. In Belgium most triplet pregnancies now result from artificial induction of ovulation, which is expected to occur mainly in older mothers. In the U.S., however, triplets have increased as much in young mothers as in older mothers, proportionally. This age distribution of the increase may be partly explained by a decrease in parity in older mothers since 1964.


2021 ◽  
pp. 004051752110320
Author(s):  
Liyao Cao ◽  
Yanfang Xu ◽  
Kaifang Xie ◽  
Fumei Wang ◽  
Guangbiao Xu

Kapok fiber is a natural hollow fiber that has superior biocompatibility and biodegradability and is naturally antibacterial. Because of its unique properties, it has great potential in the application of postoperative repair dressings. The wettability and micro-equilibrium of kapok fibers play a critical role in dressing applications. In this study, the critical adhesion volume and adhesion energy of essence liquid to alkali-treated kapok fiber (AKF) were quantitatively calculated to explore the wettability and micro-equilibrium through the equilibrium wetting theory. Meanwhile, the three-phase contact line (TCL) structure was described. The results showed that the critical adhesion volumes of the three types of essence liquid for AKF were 3.45, 3.81, and 4.12 μL, respectively. Moreover, the critical volumes and low error rates derived from the equilibrium wetting theory were 3.41 μL and 1.16%, 3.99 μL and 4.51%, and 4.60 μL and 10.43%, respectively. Therefore, the critical volume of adhesion could be well calculated by the theoretical model. The average adhesive energies of essence liquid to the AKF were 0.38, 0.45, and 0.56 J, respectively, caused by the difference in liquids properties. The TCL showed a mechanical lock and bonding points at both ends because of the curvature difference and higher surface energy. These results are proposed to inspire the design of a liquid carrier of kapok fibers based on the fiber network structure.


Sign in / Sign up

Export Citation Format

Share Document