scholarly journals Energy Willow From Experimental Plantation as a Potentially Clean Energy Source

2017 ◽  
Vol 24 (2) ◽  
pp. 203-212 ◽  
Author(s):  
Monika Janas ◽  
Alicja Zawadzka

Abstract Energy willow as a species with broad adaptation possibilities, large production capacity and a wide range of applications, takes a special place among the plants grown for energy production. In this work an analysis was conducted in respect of the usefulness of this type of wood from experimental plantations as a clean source of energy generated in the combustion process. The heat of combustion and net calorific value of dry matter of energy willow wood, including selected sorts and classes of thickness were determined. Energy willow has a natural ability to accumulate heavy metals which are oxidized during the combustion process or remain in the ash, and consequently repollute the environment. In order to determine the environmental impact the content of heavy metals was examined in energy willow wood and in the soil of the experimental plantation. Metal concentrations were determined by the Atomic Absorption Spectrometry method (AAS). Results of the tests confirmed a close relationship between the heat of combustion, calorific value and wood thickness as well as its location in the tree structure. Furthermore, very large differences were found in the content of heavy metals in the samples of both willow wood and soil. The levels of heavy metal content in the wood of energy willow determine the agricultural use of ashes produced during combustion.

Author(s):  
Sayyed Mohammad Ali Noori ◽  
Mohammad Hashemi ◽  
Sajjad Ghasemi

Abstract: Saffron is one of the most expensive spices in the world, and its popularity as a tasty food additive is spreading rapidly through many cultures and cuisines. Minerals and heavy metals are minor components found in saffron, which play a key role in the identification of the geographical origin, quality control, and food traceability, while they also affect human health. The chemical elements in saffron are measured using various analytical methods, such as techniques based on spectrometry or spectroscopy, including atomic emission spectrometry, atomic absorption spectrometry, inductively coupled plasma optical emission spectrometry, and inductively coupled plasma mass spectrometry. The present study aimed to review the published articles about heavy metals and minerals in saffron across the world. To date, 64 chemical elements have been found in different types of saffron, which could be divided into three groups of macro-elements, trace elements, and heavy metals (trace elements with a lower gravity/greater than five times that of water and other inorganic sources). Furthermore, the chemical elements in the saffron samples of different countries have a wide range of concentrations. These differences may be affected by geographical condition such as physicochemical properties of the soil, weather and other environmental conditions like saffron cultivation and its genotype.


2021 ◽  
Vol 1047 ◽  
pp. 120-127
Author(s):  
Reylina Garcia Tayactac ◽  
Edward B.O. Ang

Geothermal is known as renewable energy and a clean energy source but inherent properties make this energy clean. Minerals and deposits in geothermal reservoirs create a scale that is persistent in its corrosive nature. In addition, heat extremes and pressure variations present challenges to the integrity of the wellhead components and the downhole casing. Such challenges need to be mitigated to achieve maximum output from these aging or even newly commissioned wells. The geothermal power industry has reported a wide range of corrosion problems. Given the highly corrosive conditions to be treated in the geothermal sector and the benefits of reduced unplanned downtime, operating cost savings would be expected if more CRAs clad products were used. In many cases, only the material's surface requires corrosion resistance and carbon or alloy steel can be clad with a more corrosion-resistant alloy. Up to 80% of the cost of using solid alloy can be saved by cladding. Carbon or low-alloy steel cladding can be carried out by overlay welding. This paper reviews available literature on corrosion in the geothermal environment and presents the successful use of clad products in other industries to support the rising demand for Philippine geothermal applications.


Author(s):  
Raffaela Calabria ◽  
Fabio Chiariello ◽  
Patrizio Massoli ◽  
Fabrizio Reale

In recent years an increasing interest is focused on the study of micro gas turbines (MGT) behavior at part load by varying fuel, in order to determine their versatility. The interest in using MGT is related to the possibility of feeding with a wide range of fuels and to realize efficient cogenerative cycles by recovering heat from exhaust gases at higher temperatures. In this context, the studies on micro gas turbines are focused on the analysis of the machine versatility and flexibility, when operating conditions and fuels are significantly varied. In line of principle, in case of gaseous fuels with similar Wobbe Index no modifications to the combustion chamber should be required. The adoption of fuels whose properties differ greatly from those of design can require relevant modifications of the combustor, besides the proper adaptation of the feeding system. Thus, at low loads or low calorific value fuels, the combustor becomes a critical component of the entire MGT, as regards stability and emissions of the combustion process. Focus of the paper is a 3D CFD analysis of the combustor behavior of a Turbec T100P fueled at different loads and fuels. Differences between combustors designed for natural gas and liquid fuels are also highlighted. In case of natural gas, inlet combustor temperature and pressure were taken from experimental data; in case of different fuels, such data were inferred by using a thermodynamic model which takes into account rotating components behavior through operating maps of compressor and turbine. Specific aim of the work is to underline potentialities and critical issues of the combustor under study in case of adoption of fuels far from the design one and to suggest possible solutions.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 973
Author(s):  
Marta Bożym ◽  
Arkadiusz Gendek ◽  
Grzegorz Siemiątkowski ◽  
Monika Aniszewska ◽  
Jan Malaťák

This paper presents the results of the analysis of the chemical composition and content of heavy metal contamination in forest logging residues, in order to assess the possibility for their further utilisation. The samples were divided into 9 groups, which included coniferous tree cones, wood, and other multi-species logging residues. The elementary composition, ash content, and calorific value were determined as energy use indicators for the samples. Additionally, the content of heavy and alkali metals, which may affect combustion processes and pollutant emissions, was tested. The high content of heavy metals may also disqualify these residues for other uses. The research shows that the test residues are suitable for energy use due to their high calorific value and low content of heavy metals. However, an increased ash content in some samples and the presence of alkali metals, causing high-temperature corrosion of boilers, may disqualify them as a potential fuel in the combustion process. The forest residues may be used in other thermal processes such as pyrolysis or gasification. A low content of heavy metals and a high content of organic matter permit the use of these residues for the production of adsorbents or composite materials.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Hussain I. ◽  
Jalil A. A. ◽  
Mamat C. R. ◽  
Siang T. J. ◽  
Azami M. S. ◽  
...  

The increasing demand of natural gas and its rising cost have urged some countries to take initiatives to fulfil their energy needs. The production of substituted natural gas (SNG) by syngas (CO + H2) from coal or biomass is one of the most effective methods. As a promising source of energy, SNG has attracted much attention on research and applications due to the high demand for environmental protection. It is regarded as a clean energy source and an effective method for the application of coal resources, particularly in the regions with abundant coal resources but scarce natural gas such as in China [1-3]. SNG has attracted increasing attention due to its lower emission of sulphur and particulate matter. SNG is expected to be one of the main energy sources of the 21st century. It is environmentally friendly and less costly, has high calorific value, complete combustion, and smoke free compared to other energy sources. It has significant importance for the industrial level and transportation sectors.


2021 ◽  
Author(s):  
Dr. Ramakrishna G. Bhat ◽  
Pankaj D. Dharpure ◽  
Mousumi Behera ◽  
Archana S. Thube

Base dependent oxidative rearrangement of dithiolanes and dithianes to access disulfide-linked-dithioesters under visible-light photoredox catalytic conditions has been disclosed. The protocol demonstrated the ability to synthesize either rearranged product or sulfoxide by simply switching the base with inherent ability to make hydrogen bonding with sulfur atom. Unlike, the usual deprotection of thioacetals to corresponding aldehydes under the oxidative conditions, we observed the unique regioselective oxidative reactivity of thioacetals to form disulfide-linked-dithioester or sulfoxides. The generality of the protocol has been demonstrated by exploring a wide range of substrates. As an application the in-situ generated thyil radical has been trapped with disulfides to prepare hetro-disulfides of potential utility. The protocol proved to be practical on gram scale quantity and relied on clean energy source for the transformation. Based on the series of control experiments, cyclic volametry and Stern-Volmer studies the plausible mechanism has been proposed.


2007 ◽  
Vol 7 (1 & 2) ◽  
pp. 120
Author(s):  
M. Djoni Bustan

Energy is an expensive basic need for human life, especially energy from fossils, such as crude oil, gas, and coal. In an oil refinery factory or electrical generator unit, where heat is most dominantly utilized, the boiler is used to generate steam. The main problem in a boiler is its uncompleted combustion process because of the incomplete ratio of air–fuel. This problem is caused by the addition of deposits or sealing inside and outside of the tube fire heater which will reduce the performance of fired heater. The objective of this research is to study the effect of steam flow variation on burner and tubing for increasing heat and temperature as well as the quality of steam. This research used a package boiler B&W series 1986 model which can be seen at an oil refinery factory or steam power electrical generator unit in Indonesia. This package boiler has 50kg/hours steam production capacity, qualified superheated steam, maximum pressure and temperature at 7kgs/cms2 and 700oC. Quantitatively, the achievable heat efficiency which corresponded to the temperature increase caused by the steam injection is 41.25% and the specific enthalpy is 12.07%.


2021 ◽  
Vol 13 (15) ◽  
pp. 8552
Author(s):  
Vahid Alimohammadi ◽  
Mehdi Maghfouri ◽  
Delaram Nourmohammadi ◽  
Pejman Azarsa ◽  
Rishi Gupta ◽  
...  

Clean water is a vital need for all living creatures during their lifespan. However, contaminated stormwater is a major issue around the globe. A wide range of contaminants, including heavy metals, organic and inorganic impurities, has been discovered in stormwater. Some commonly utilized methods, such as biological, physical and chemical procedures, have been considered to overcome these issues. However, these current approaches result in moderate to low contaminant removal efficiencies for certain classes of contaminants. Of late, filtration and adsorption processes have become more featured in permeable concretes (PCs) for the treatment of stormwater. As nanoparticles have vast potential and unique characterizations, such as a higher surface area to cure polluted stormwater, employing them to improve permeable concretes’ capabilities in stormwater treatment systems is an effective way to increase filtration and adsorption mechanisms. The present study reviews the removal rate of different stormwater contaminants such as heavy metals, organic and other pollutants using nanoparticle-improved PC. The application of different kinds of nanomaterials in PC as porous media to investigate their influences on the properties of PC, including the permeability rate, compressive strength, adsorption capacity and mix design of such concrete, was also studied. The findings of this review show that different types of nanomaterials improve the removal efficiency, compressive strength and adsorption capacity and decrease the infiltration rate of PC during the stormwater treatment process. With regard to the lack of comprehensive investigation concerning the use of nanomaterials in PC to treat polluted stormwater runoff, this study reviews 242 published articles on the removal rate of different stormwater contaminants by using PC improved with nanoparticles.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Monika Rusin ◽  
Joanna Domagalska ◽  
Danuta Rogala ◽  
Mehdi Razzaghi ◽  
Iwona Szymala

AbstractChemical contamination of foods pose a significant risk to consumers. A source of this risk is due to the consumption of products contaminated with heavy metals such as cadmium (Cd) and lead (Pb). The aim of the study was to research the levels of Cd and Pb contamination of selected species of vegetables and fruits in the form of fresh, frozen, dried and processed products. The goal was to verify which of these food groups was more contaminated with heavy metals. The study covered 370 samples of fruits and vegetables including apples, pears, grapes, raspberries, strawberries, cranberries, as well as beetroots, celeries, carrots and tomatoes. The content of Cd and Pb was determined by atomic absorption spectrometry. Quantitative results were analyzed using statistical models: analysis of variance, outlier analysis, post-hoc multiple comparison Tukey test. The tests showed that the levels of Cd and Pb concentration in samples of fresh, processed, frozen and dried fruits and vegetables varied substantially. The highest concentrations were recorded in dried products. Several fruit and vegetable samples exceeded the maximum permissible concentrations of Cd and Pb. The contamination of these products could be a significant source of consumer exposure to heavy metals when these products are a part of the diet.


Sign in / Sign up

Export Citation Format

Share Document