scholarly journals Kinetic study on the reaction between Incoloy 825 alloy and low-fluoride slag for electroslag remelting

2022 ◽  
Vol 11 (1) ◽  
pp. 1-10
Author(s):  
Jiantao Ju ◽  
Zhihong Zhu ◽  
Jialiang An ◽  
Kangshuai Yang ◽  
Yue Gu

Abstract A kinetic model for the reactions between the low-fluoride slag CaF2–CaO–Al2O3–MgO–Li2O–TiO2 and Incoloy 825 alloy was proposed based on the two-film theory. The applicability of the model was verified to predict the variation of components in the slag–metal reaction process. The results show that the controlling step of the reaction 4[Al] + 3(TiO2) = 3[Ti] + 2(Al2O3) is the mass transfer of Al and Ti in the liquid alloy and the controlling step of the reactions 4[Al] + 3(SiO2) = 3[Si] + 2(Al2O3) and [Si] + (TiO2) = [Ti] + (SiO2) is the mass transfer of SiO2 in the molten slag. With increasing TiO2 content in the slag from 3.57% to 11.27%, the Al content in the alloy decreased whereas the Ti content increased gradually. The Si content continued to decrease during the slag–metal reaction. Soluble oxygen in the alloy reacts with Al, Ti, and Si, resulting in a decrease of the oxygen content in the alloy. The variations of TiO2 content were in good agreement with the calculated results by the kinetic model whereas the measured results of Al2O3 and SiO2 in the slag were lower than the calculated results, which is mainly due to the volatilization of fluoride.

2016 ◽  
Vol 22 (2) ◽  
pp. 137-144 ◽  
Author(s):  
Marija Miladinovic ◽  
Marija Tasic ◽  
Olivera Stamenkovic ◽  
Vlada Veljkovic ◽  
Dejan Skala

The kinetic model, which was originally developed for sunflower oil methanolysis catalyzed by CaO.ZnO, was examined for several other calcium-based catalysts like neat CaO, quicklime and Ca(OH)2. This model including triacylglycerols mass transfer- and chemically-controlled regimes demonstrated a good agreement with the experimental data in terms of a high coefficient of determination (0.971?0.022) and acceptable mean relative percentage deviation (?15.9%). Hence, this model is recommended for modeling the kinetics of sunflower oil methanolysis over calcium-based catalysts under widely ranging reaction conditions.


1997 ◽  
Vol 483 ◽  
Author(s):  
G. V. Gadiyak

AbstractWide applications of silicon carbide (SiC) films in microelectronics devices make especially important predictions of the doping profiles during and/or after thermal treatment. A macroscopic kinetic model of enhanced diffusion of aluminum in SiC films during ion bombardment at high temperatures has been considered. The set of equations describing the kinetic model takes into account generation Vc and Csi vacancies during bombardment, migration of mobile species (Al) toward the surface and reactions of Al atoms with Vc and Vsi vacancies, as well as Al evolution from the film. The calculations were carried out for the flux of Al ions with energy 40 keV and current density 20 μA/cm2 to a dose 2 1016 cm−2 at 1800° C. The calculations have shown that the Al content in SiC at these condition does not exceed 40%. The calculation profile of Al is in a good agreement with experimental data [1].


2016 ◽  
Vol 683 ◽  
pp. 402-405
Author(s):  
Natalya G. Bryantseva ◽  
Olga N. Tchaikovskaya ◽  
Vlada S. Kraiukhina ◽  
Maria Gómez ◽  
Jose Luis Gómez

Photodegradation of 5-Methoxypsoralen (5-MOP), 4', 5'-dimethyl-3,4-cyclogeksilpsoralen (KC5) and 4'-methyl-3,4 cycloheptylpsoralen (KC4) has been carried out in an XeBr exilamps, both in the presence of H2O2, and a kinetic model, which explains the dependence of the pseudo-first order kinetic parameter on the substrate concentration and other operational variables, has been developed. In the development of the model, mass transfer of 5-MOP, KC5 and KC4from the bulk solution to the wall of the vessel was assumed as the step determining the rate of the photodegradation process, which successfully explains some singularities observed in the experimental results.By fitting the experimental data to the model, a detailed study of the influence of all operational variables on the pseudo-first order kinetic parameter has been done, in good agreement with the model hypotheses.


2003 ◽  
Vol 3 (1-2) ◽  
pp. 201-207
Author(s):  
H. Nagaoka ◽  
T. Nakano ◽  
D. Akimoto

The objective of this research is to investigate mass transfer mechanism in biofilms under oscillatory flow conditions. Numerical simulation of turbulence near a biofilm was conducted using the low Reynold’s number k-ɛ turbulence model. Substrate transfer in biofilms under oscillatory flow conditions was assumed to be carried out by turbulent diffusion caused by fluid movement and substrate concentration profile in biofilm was calculated. An experiment was carried out to measure velocity profile near a biofilm under oscillatory flow conditions and the influence of the turbulence on substrate uptake rate by the biofilm was also measured. Measured turbulence was in good agreement with the calculated one and the influence of the turbulence on the substrate uptake rate was well explained by the simulation.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 139-147 ◽  
Author(s):  
Harald Horn ◽  
Dietmar C. Hempel

The use of microelectrodes in biofilm research allows a better understanding of intrinsic biofilm processes. Little is known about mass transfer and substrate utilization in the boundary layer of biofilm systems. One possible description of mass transfer can be obtained by mass transfer coefficients, both on the basis of the stagnant film theory or with the Sherwood number. This approach is rather formal and not quite correct when the heterogeneity of the biofilm surface structure is taken into account. It could be shown that substrate loading is a major factor in the description of the development of the density. On the other hand, the time axis is an important factor which has to be considered when concentration profiles in biofilm systems are discussed. Finally, hydrodynamic conditions become important for the development of the biofilm surface when the Reynolds number increases above the range of 3000-4000.


1985 ◽  
Vol 50 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Andreas Zahn ◽  
Lothar Ebner ◽  
Kurt Winkler ◽  
Jan Kratochvíl ◽  
Jindřich Zahradník

The effect of two-phase flow regime on decisive hydrodynamic and mass transfer characteristics of horizontal-tube gas-liquid reactors (pressure drop, liquid holdup, kLaL) was determined in a cocurrent-flow experimental unit of the length 4.15 m and diameter 0.05 m with air-water system. An adjustable-height weir was installed in the separation chamber at the reactor outlet to simulate the effect of internal baffles on reactor hydrodynamics. Flow regime maps were developed in the whole range of experimental gas and liquid flow rates both for the weirless arrangement and for the weir height 0.05 m, the former being in good agreement with flow-pattern boundaries presented by Mandhane. In the whole range of experi-mental conditions pressure drop data could be well correlated as a function of gas and liquid flow rates by an empirical exponential-type relation with specific sets of coefficients obtained for individual flow regimes from experimental data. Good agreement was observed between values of pressure drop obtained for weirless arrangement and data calculated from the Lockhart-Martinelli correlation while the contribution of weir to the overall pressure drop was well described by a relation proposed for the pressure loss in closed-end tubes. In the region of negligible weir influence values of liquid holdup were again succesfully correlated by the Lockhart-Martinelli relation while the dependence of liquid holdup data on gas and liquid flow rates obtained under conditions of significant weir effect (i.e. at low flow rates of both phases) could be well described by an empirical exponential-type relation. Results of preliminary kLaL measurements confirmed the decisive effect of the rate of energy dissipation on the intensity of interfacial mass transfer in gas-liquid dispersions.


1991 ◽  
Vol 56 (10) ◽  
pp. 2020-2029
Author(s):  
Jindřich Leitner ◽  
Petr Voňka ◽  
Josef Stejskal ◽  
Přemysl Klíma ◽  
Rudolf Hladina

The authors proposed and treated quantitatively a kinetic model for deposition of epitaxial GaAs layers prepared by reaction of trimethylgallium with arsine in hydrogen atmosphere. The transport of gallium to the surface of the substrate is considered as the controlling process. The influence of the rate of chemical reactions in the gas phase and on the substrate surface on the kinetics of the deposition process is neglected. The calculated dependence of the growth rate of the layers on the conditions of the deposition is in a good agreement with experimental data in the temperature range from 600 to 800°C.


Author(s):  
M. Leuchtenmueller ◽  
C. Legerer ◽  
U. Brandner ◽  
J. Antrekowitsch

AbstractEffective recycling of zinc-containing industrial wastes, most importantly electric arc furnace dust, is of tremendous importance for the circular economy of the steel and zinc industry. Herein, we propose a comprehensive kinetic model of the combined carbothermic and metallothermic reduction of zinc oxide in a metal bath process. Pyro-metallurgical, large-scale lab experiments of a carbon-saturated iron melt as reduction agent for a molten zinc oxide slag were performed to determine reaction constants and accurately predict mass transfer coefficients of the proposed kinetic model. An experimentally determined kinetic model demonstrates that various reactions run simultaneously during the reduction of zinc oxide and iron oxide. For the investigated slag composition, the temperature-dependent contribution of the metallothermic zinc oxide reduction was between 25 and 50 pct of the overall reaction mechanism. The mass transfer coefficient of the zinc oxide reduction quadrupled from 1400 °C to 1500 °C. The zinc recovery rate was > 99.9 pct in all experiments.


2018 ◽  
Vol 37 (7) ◽  
pp. 665-674
Author(s):  
Liguang Zhu ◽  
Yanan Jia ◽  
Zengxun Liu ◽  
Caijun Zhang ◽  
Xingjuan Wang ◽  
...  

AbstractPrecise control of inclusion and molten steel compositions during ladle-furnace refining is important to obtain high-quality steel. Mass-transfer behavior affects these compositions. A model was developed to investigate the mass transfer occurring between molten steel, slag, inclusions, and the refractory during ladle-furnace refining, using two-film theory to describe the reactions. A coupled-reaction model based on the CaO–Al2O3–MgO–SiO2–FeO–P2O5 slag and Mn–Si–Al–Ca–Mg–P–S–O steel systems was applied to describe the reactions between molten steel and slag; the reactions between the refractory lining and slag or steel were described using average industrial erosion rate data. The model was used to calculate changes in the compositions of molten steel and slag, oxygen activity at the slag–molten steel interface, and composition of the inclusions. The calculated results agreed with operational results for a 100 t ladle furnace at the Tangsteel plant in China.


Sign in / Sign up

Export Citation Format

Share Document