Research progress on individual effect of graphene oxide in cement-based materials and its synergistic effect with other nanomaterials

2021 ◽  
Vol 10 (1) ◽  
pp. 1208-1235
Author(s):  
Changjiang Liu ◽  
Fulian Chen ◽  
Yuyou Wu ◽  
Zhoulian Zheng ◽  
Jingwei Yang ◽  
...  

Abstract Poor crack resistance, high brittleness, and poor toughness are inherent limitations of traditional cement-based materials. Besides, cement-based materials have certain shortcomings in energy consumption and environmental protection. Therefore, improving the performance of cement-based materials becomes a hot topic in related research. At the same time, the development of nanomaterials and technologies provides researchers with a new research idea: to enhance the performance of cement-based materials at the nanoscale level. Graphene oxide (GO) is one of the most representative nano-reinforcements. Due to its high surface area and excellent physical properties, GO has a surprising effect on improving the performance of cement-based materials. In addition, nanosilica (NS) and carbon nanotubes (CNTs) have excellent improvement on cement-based materials, and people also hope to further improve the performance of cement-based materials through the interaction of various nanomaterials. In this paper, the influence of GO on cement-based materials is reviewed by consulting a lot of correlative literature, mainly focusing on the following aspects: (i) The dispersion of GO in cement paste. (ii) The influence of GO on the properties of cement-based materials, including working performance, mechanical strength, microstructural characteristics, and durability. (iii) The effect of nanohybrid materials of GO, NS, and CNTs on cement-based materials, and the synergistic effects of various nanomaterials are reviewed for the first time. (iv) Evaluation of current progress. This paper aims to provide guidance for the study and application of GO-modified cement-based materials and nanohybrid materials.

Author(s):  
Soumitra Satapathi ◽  
Rutusmita Mishra ◽  
Manisha Chatterjee ◽  
Partha Roy ◽  
Somesh Mohapatra

Nano-materials based drug delivery modalities to specific organs and tissues has become one of the critical endeavors in pharmaceutical research. Recently, two-dimensional graphene has elicited considerable research interest because of its potential application in drug delivery systems. Here we report, the drug delivery applications of PEGylated nano-graphene oxide (nGO-PEG), complexed with a multiphoton active and anti-cancerous diarylheptanoid drug curcumin. Specifically, graphene-derivatives were used as nanovectors for the delivery of the hydrophobic anticancer drug curcumin due to its high surface area and easy surface functionalization. nGO was synthesized by modified Hummer’s method and confirmed by XRD analysis. The formation of nGO, nGO-PEG and nGO-PEG-Curcumin complex were monitored through UV-vis, IR spectroscopy. MTT assay and AO/EB staining found that nGO-PEG-Curcumin complex afforded highly potent cancer cell killing in vitro with a human breast cancer cell line MCF7.


2017 ◽  
Vol 75 (10) ◽  
pp. 2403-2411 ◽  
Author(s):  
Zongxue Yu ◽  
Qi Chen ◽  
Liang Lv ◽  
Yang Pan ◽  
Guangyong Zeng ◽  
...  

The environmental applications of graphene oxide and β-cyclodextrin (β-CD) have attracted great attention since their first discovery. Novel nanocomposites were successfully prepared by using an esterification reaction between β-cyclodextrin/γ-(2,3-epoxypropoxy) propyl trimethoxysilane grafted graphene oxide (β-CD/GPTMS/GO). The β-CD/GPTMS/GO nanocomposites were used to remove the Cu2+ from aqueous solutions. The characteristics of β-CD/GPTMS/GO were detected by scanning electron microscopy (SEM), Fourier transform infrared, X-ray diffraction (XRD), thermogravimetric analysis (TG) and energy dispersive X-ray (EDX). The dispersibility of graphene oxide was excellent due to the addition of β-CD. The adsorption isotherms data obtained at the optimum pH 7 were fitted by Langmuir isotherm model. The excellent adsorption properties of β-CD/GPTMS/GO for Cu2+ ions could be attributed to the apolar cavity structure of β-CD, the high surface area and abundant functional groups on the surface of GO. The adsorption patterns of β-CD/GPTMS/GO were electrostatic attraction, formation of host-guest inclusion complexes and the ion exchange adsorption. The efficient adsorption of β-CD/GPTMS/GO for Cu2+ ions suggested that these novel nanocomposites may be ideal candidates for removing other cation pollutants from waste water.


Author(s):  
Immacolata Tufano ◽  
Raffaele Vecchione ◽  
Paolo Antonio Netti

Despite considerable progress in the comprehension of the mechanisms involved in the origin and development of cancer, with improved diagnosis and treatment, this disease remains a major public health challenge with a considerable impact on the social and economic system, as well as on the individual. One way to improve effectiveness and reduce side effects is to consider responsive stimuli delivery systems that provide tailor-made release profiles with excellent spatial and temporal control. 2D nanomaterials possess special physicochemical properties (e.g., light, ultrasonic and magnetic responses) and biological behaviors such as endocytosis, biodistribution, biodegradation, and excretory pathways, which lead to their use in various biomedical applications. In particular, among 2D nanomaterials, graphene and its derivatives, namely graphene oxide (GO) nanomaterials, have attracted enormous attention in cancer diagnosis and therapy because they combine, in a unique material, extremely small size, NIR absorption, delocalized electrons, extremely high surface area, and versatile surface functionality. Taking into account the fundamental role played by GO size, in this review, we summarize the main methods employed to reduce and homogenize in nanometric scale the lateral dimensions of graphene oxide produced by chemical exfoliation of graphite, as well as post-synthesis separation techniques to uniform the size. We also discuss the implication of the small size in cancer treatment by exploiting GO nanocarriers as an effective theranostic tool.


2019 ◽  
Vol 43 (48) ◽  
pp. 19372-19378 ◽  
Author(s):  
Jianyu Huang ◽  
Simin Liu ◽  
Zifang Peng ◽  
Zhuoxian Shao ◽  
Yuanyuan Zhang ◽  
...  

The synergistic effects of high surface area and abundant heteroatoms make porous carbons superior electrode materials.


2019 ◽  
Vol 274 ◽  
pp. 05004
Author(s):  
Zhiyuan Lin ◽  
Ding Fan ◽  
Shangtong Yang

Cementitious nano-composites have recently attracted considerable research interest in order to improve their properties such as strength and durability. Graphene oxide (GO) is being considered as an ideal candidate for enhancing the mechanical properties of the cement due to its good dispersion property and high surface area. Much of work has been done on experimentally investigating the mechanical properties of GO-cementitious composites; but there are currently no models for accurate estimation of their mechanical properties, making proper analysis and design of GO-cement based materials a major challenge. This paper attempts to develop a novel multi-scale analytical model for predicting the elastic modulus of GO-cement taking into account the GO/cement ratio, porosity and mechanical properties of different phases. This model employs Eshelby tensor and Mori-Tanaka solution in the process of upscaling the elastic properties of GO-cement through different length scales. In-situ micro bending tests were conducted to elucidate the behavior of the GO-cement composites and verify the proposed model. The obtained results showed that the addition of GO can change the morphology and enhance the mechanical properties of the cement. The developed model can be used as a tool to determine the elastic properties of GO-cement through different length scales.


2020 ◽  
Vol 209 ◽  
pp. 110446 ◽  
Author(s):  
Deng Long ◽  
Jian Peng ◽  
Huanhuan Liu ◽  
Zhijun Feng ◽  
Lun Chen ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
pp. 56-63
Author(s):  
Qiuqiu Wang ◽  
Juanhua Zhang ◽  
Yanbo Xu ◽  
Yingyi Wang ◽  
Liang Wu ◽  
...  

One-step electrochemically reduced graphene oxide with high surface area and improved electron transfer kinetics shows great performances in the determination of furfural in dairy milk.


2019 ◽  
Vol 20 (12) ◽  
pp. 2975 ◽  
Author(s):  
Madasamy Thangamuthu ◽  
Kuan Yu Hsieh ◽  
Priyank V. Kumar ◽  
Guan-Yu Chen

Graphene and its derivatives such as graphene oxide (GO) and reduced GO (rGO) offer excellent electrical, mechanical and electrochemical properties. Further, due to the presence of high surface area, and a rich oxygen and defect framework, they are able to form nanocomposites with metal/semiconductor nanoparticles, metal oxides, quantum dots and polymers. Such nanocomposites are becoming increasingly useful as electrochemical biosensing platforms. In this review, we present a brief introduction on the aforementioned graphene derivatives, and discuss their synthetic strategies and structure–property relationships important for biosensing. We then highlight different nanocomposite platforms that have been developed for electrochemical biosensing, introducing enzymatic biosensors, followed by non-enzymatic biosensors and immunosensors. Additionally, we briefly discuss their role in the emerging field of biomedical cell capture. Finally, a brief outlook on these topics is presented.


2020 ◽  
Vol 82 (9) ◽  
pp. 1721-1741
Author(s):  
Jéssica Stefanello Cadore ◽  
Lucas Fernando Fabro ◽  
Thuany Garcia Maraschin ◽  
Nara Regina de Souza Basso ◽  
Marçal José Rodrigues Pires ◽  
...  

Abstract The presence of contaminants in water is concerning due to the potential impacts on human health and the environment, and ingested contaminants cause harm in various ways. The conventional water treatment systems are not efficient to remove these contaminants. Therefore, novel techniques and materials for the removal of contaminants are increasingly being developed. The separation process using modified membranes can remove these micropollutants; therefore, they have attracted significant research attention. Among the materials used for manufacturing of these membranes, composites based on graphene oxide and reduced graphene oxide are preferred owing to their promising properties, such as mechanical resistance, thermal and chemical stability, antifouling capacity, water permeability, high thermal and electrical conductivity, high optical transmittance and high surface area. Membrane separation processes (MSP) can be used as secondary or tertiary treatment during the supply of wastewater. However, the efficient and accessible applications of these technologies are challenging. This study aims to demonstrate the main concepts of membrane separation processes and their application in the removal of emerging contaminants. This study reports bibliometric mapping, relevant data on studies using membranes as water treatment processes, and their viability in industrial applications. The main challenges and perspectives of these technologies are discussed in detail as well.


Sign in / Sign up

Export Citation Format

Share Document