scholarly journals Effect Carrageenan to Biodegradable Plastic From Tubers

2020 ◽  
Vol 8 (2) ◽  
pp. 148-155
Author(s):  
Toto Rusianto ◽  
Murni Yuniwati ◽  
Hary Wibowo

Plastic waste can cause serious environmental problems. This can be overcome by various efforts; one of them is by replacing the use of conventional plastic with biodegradable plastic. Biodegradable plastic can be produced from tubers containing starch. The purpose of this study was to explain the suitability of two tuber species with typical protein quality and different starch structures. Starch was obtained from suweg tuber (Amorphophallus campanulatus) and ganyong (Canna edulis Ker). The material invested was obtained by dissolving 4 grams of each starch, each of which was dissolved with distilled water then added with various weight carrageenan. The tensile strength of biodegradable plastic was tested using tensile testing machines, biodegradation of soaked plastics using EM4 (Effective Microorganism) with reduced weight measurements, and Fourier Transform Infra-Red (FTIR) was used to identify the structure of compounds contained in biodegradable plastics. The tensile strength test results of biodegradable plastic from ganyong/canna tubers were 3.35 MPa with elongation of 13.51%, while the plastic from suweg tubers of 2.45 MPa with elongation was 13.68% on the addition of 5% carrageenan, respectively. Plastic degradation testing obtained plastic decomposition up to 100% in 37 days for ganyong and 34 days for suweg, respectively. It showed that the plastics was easily degraded. Identified by FTIR showed chemical structures of OH phenolic alcohols, C = O carbonyls, CO esters, NH amides and amines, and C≡C alkyne.

2018 ◽  
Vol 9 (2) ◽  
pp. 67-73
Author(s):  
M Zainul Arifin

This research was conducted to determine the value of the highest compressive strength from the ratio of normal concrete to normal concrete plus additive types of Sika Cim with a composition variation of 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1 , 50% and 1.75% of the weight of cement besides that in this study also aims to find the highest tensile strength from the ratio of normal concrete to normal concrete in the mixture of sika cim composition at the highest compressive strength above and after that added fiber wire with a size diameter of 1 mm in length 100 mm with a ratio of 1% of material weight. The concrete mix plan was calculated using the ASTM method, the matrial composition of the normal concrete mixture as follows, 314 kg / m3 cement, 789 kg / m3 sand, 1125 kg / m3 gravel and 189 liters / m3 of water at 10 cm slump, then normal concrete added variations of the composition of sika cim 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1.5%, 1.75% by weight of cement and fiber, the tests carried out were compressive strength of concrete and tensile strength of concrete, normal maintenance is soaked in fresh water for 28 days at 30oC. From the test results it was found that the normal concrete compressive strength at the age of 28 days was fc1 30 Mpa, the variation in the addition of the sika cim additive type mineral was achieved in composition 0.75% of the cement weight of fc1 40.2 Mpa 30C. Besides that the tensile strength test results were 28 days old with the addition of 1% fiber wire mineral to the weight of the material at a curing temperature of 30oC of 7.5%.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 875
Author(s):  
Chenchen Luan ◽  
Qingyuan Wang ◽  
Fuhua Yang ◽  
Kuanyu Zhang ◽  
Nodir Utashev ◽  
...  

There have been a few attempts to develop prediction models of splitting tensile strength and reinforcement-concrete bond strength of FAGC (low-calcium fly ash geopolymer concrete), however, no model can be used as a design equation. Therefore, this paper aimed to provide practical prediction models. Using 115 test results for splitting tensile strength and 147 test results for bond strength from experiments and previous literature, considering the effect of size and shape on strength and structural factors on bond strength, this paper developed and verified updated prediction models and the 90% prediction intervals by regression analysis. The models can be used as design equations and applied for estimating the cracking behaviors and calculating the design anchorage length of reinforced FAGC beams. The strength models of PCC (Portland cement concrete) overestimate the splitting tensile strength and reinforcement-concrete bond strength of FAGC, so PCC’s models are not recommended as the design equations.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 300
Author(s):  
Md. Safiuddin ◽  
George Abdel-Sayed ◽  
Nataliya Hearn

This paper presents the water absorption and strength properties of short carbon fiber reinforced mortar (CFRM) composite. Four CFRM composites with 1%, 2%, 3%, and 4% short pitch-based carbon fibers were produced in this study. Normal Portland cement mortar (NCPM) was also prepared for use as the control mortar. The freshly mixed mortar composites were tested for workability, wet density, and entrapped air content. In addition, the hardened mortar composites were examined for compressive strength, splitting tensile strength, flexural strength, and water absorption at the ages of 7 and 28 days. The effects of different carbon fiber contents on the tested properties were observed. Test results showed that the incorporation of carbon fibers decreased the workability and wet density, but increased the entrapped air content in mortar composite. Most interestingly, the compressive strength of CFRM composite increased up to 3% carbon fiber content and then it declined significantly for 4% fiber content, depending on the workability and compaction of the mortar. In contrast, the splitting tensile strength and flexural strength of the CFRM composite increased for all fiber contents due to the greater cracking resistance and improved bond strength of the carbon fibers in the mortar. The presence of short pitch-based carbon fibers significantly strengthened the mortar by bridging the microcracks, resisting the propagation of these minute cracks, and impeding the growth of macrocracks. Furthermore, the water absorption of CFRM composite decreased up to 3% carbon fiber content and then it increased substantially for 4% fiber content, depending on the entrapped air content of the mortar. The overall test results suggest that the mortar with 3% carbon fibers is the optimum CFRM composite based on the tested properties.


2015 ◽  
Vol 749 ◽  
pp. 278-281
Author(s):  
Jia Horng Lin ◽  
Jing Chzi Hsieh ◽  
Jin Mao Chen ◽  
Wen Hao Hsing ◽  
Hsueh Jen Tan ◽  
...  

Geotextiles are made of polymers, and their conjunction with different processes and materials can provide geotextiles with desirable characteristics and functions, such as filtration, separation, and drainage, and thereby meets the environmental requirements. Chemical resistant and mechanical strong polymers, including polyester (PET) and polypropylene (PP), are thus used to prolong the service life of the products made by such materials. This study proposes highly air permeable geotextiles that are made with different thicknesses and various needle punching speeds, and the influences of these two variables over the pore structure and mechanical properties are then examined. PET fibers, PP fibers, and recycled Kevlar fibers are blended, followed by being needle punched with differing spaces and speeds to form geotextiles with various thicknesses and porosities. The textiles are then evaluated for their mechanical strength and porosity. The test results show that a thickness of 4.5 cm and 1.5 cm demonstrate an influence on the tensile strength of the geotextiles, which is ascribed to the webs that are incompletely needle punched. However, the excessive needle punching speed corresponding to a thickness of 0.2 cm results in a decrease in tensile strength, but there is also an increase in the porosity of the geotextiles.


2015 ◽  
Vol 60 (4) ◽  
pp. 2821-2826 ◽  
Author(s):  
A. Wierzba ◽  
S. Mróz ◽  
P. Szota ◽  
A. Stefanik ◽  
R. Mola

The paper presents the results of the experimental study of the three-layer Al-Mg-Al sheets rolling process by the ARB method. The tests carried out were limited to single-pass symmetric and asymmetric rolling processes. An Al-Mg-Al package with an initial thickness of 4 mm (1-2-1 mm) was subjected to the process of rolling with a relative reduction of 50%. To activate the shear band in the strip being deformed, an asymmetry factor of av=2 was applied. From the test results, an increase in the tensile strength of the multi-layer Al-Mg-Al sheets obtained from the asymmetric process was observed. Microhardness tests did not show any significant differences in aluminium layer between respective layers of sheets obtained from the symmetric and the asymmetric process. By contrast, for the magnesium layer, an increase in microhardness from 72 HV to 79 HV could be observed for the asymmetric rolling. The analysis of the produced Al-Mg-Al sheets shows that the good bond between individual layers and grain refinement in the magnesium layer contributed to the obtaining of higher mechanical properties in the multi-layer sheets produced in the asymmetric process compared to the sheets obtained from the symmetric process.


2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


1983 ◽  
Vol 10 (1) ◽  
pp. 104-115
Author(s):  
Zenon A. Zielinski ◽  
Ioanis Spiropoulos

The flexural uniaxial and biaxial tensile strength of concrete was studied experimentally on one-way and two-way ribbed slab specimens. The specimens, consisting of a thin slab and deep ribs, constituted part of a waffle-like structure.Uniaxial tension was achieved by supporting the specimens at two points at the ends of one rib, and biaxial tension by supporting the specimens at four points at the ends of two cross ribs. In both support conditions, load was applied in the middle of the slab, thus introducing flexural tension in the ribs and compression in the slab.Measurements of tensile strain were carried out by means of uniaxial strain gauges attached to the bottom surface of the ribs. The modes of failure of concrete in uniaxial and biaxial tension were observed and are discussed in this paper. A revised biaxial failure envelope of concrete in tension is proposed.The test results indicate that the tensile strength of concrete is about 38% higher in the uniaxial stress state than in the biaxial. Keywords: concrete strength, uniaxial and biaxial tensile flexural strength, maximum strains, cracking, ribbed structure, waffle structure.


This research work has been investigated the agriculture solid waste of sugarcane bagasse ash (SCBA) materials replacing Portland cement and produces the assured quality of concrete. The current research work for various mixes of experimental test results shows the higher compressive strength was 37.51MPa at 28-days, 38.10 MPa at 56-days, the best mix consisting of SCBA (wet sieving method) content up to 15% (by weight of binding materials) along with 1.5% of waste tin fibers and also an excellent improvement trend was noted in flexural rigidity of concrete to addition of tin fibers shows the higher bending stress for all mixes except reference as well as more than 15% of SCBA concrete at different curing days. However, this study focused on the indirect measurement of tensile strength in SCBA concrete obtained the higher split tensile strength was 3.75MPa at 28-days, 3.95MPa at 56-days. It is concluded based on the various test results for different curing days the optimum replacement level of SCBA up to 15% of Portland cement was fixed and achieve the target strength of M25 grade of Portland cement concrete at 28 days.


Author(s):  
Nurwani Hayati ◽  
Lazulva Lazulva

The manufacture of the bioplastic was done through the mixing process using an aquades solvent with a ratio massa 10 gram and 7 gram cornstarch, 150 mL aquades, 2 Ml glycerol and 0,5 gram ZnO. This study aim to find out physical characteristies (water vapour transmission rate, water content, thickness,biodegradation) and mechanical charateristics (tensile strength, elongasi, modulus young) are made of cornstrach (Zea mays) using ZnO metal. From the test results tensile strength was 2.744-4.018 Mpa, percentage of elongation was 28.4632.383%, modulus young’s was 8.9031026535-14.08617709Mpa, thickness was 0.16-0.29mm, water vapor transmission rate was 0.4329-1.52525g/m2.24 hours, water content was 13.5-14.5%, and biodegradation was 3.7798-7.0346% and 455-809 days.


2019 ◽  
Vol 292 ◽  
pp. 9-14 ◽  
Author(s):  
Oldrich Sucharda ◽  
Vlastimil Bilek

Concrete is typical composite material and its properties can be very variable. Material properties are also influenced with the technology of processing, manufacturing and treatment after concreting. Reinforcement in form of fibers is often added for improving tensile strength. This paper deals with specific testing of fibre concrete. Test results of series of specimens are presented for selected transport concrete composition, which is reinforced with amount of fibers 25, 50, 75 kg / m3. Fibers were added directly into the into the concrete mixer in the factory. Each series includes more than 25 test samples. The tests include the compressive strength of a cube and cylindrical, testing of modulus of elasticity, and the split tensile strength in the direction perpendicular to and parallel to the filling. Within the research project also a few types of bending tests were performed. Four variants of bending test that vary in span of 500 or 600 mm, samples with and without a notch, and in a three- / four-point configuration. As a summary, broader evaluation and functional dependencies are derived.


Sign in / Sign up

Export Citation Format

Share Document