scholarly journals GPER1 is regulated by insulin in cancer cells and cancer-associated fibroblasts

2014 ◽  
Vol 21 (5) ◽  
pp. 739-753 ◽  
Author(s):  
Paola De Marco ◽  
Enrica Romeo ◽  
Adele Vivacqua ◽  
Roberta Malaguarnera ◽  
Sergio Abonante ◽  
...  

Elevated insulin levels have been associated with an increased cancer risk as well as with aggressive and metastatic cancer phenotypes characterized by a poor prognosis. Insulin stimulates the proliferation, migration, and invasiveness of cancer cells through diverse transduction pathways, including estrogen signaling. As G protein estrogen receptor 1 (GPER1) mediates rapid cell responses to estrogens, we evaluated the potential of insulin to regulate GPER1 expression and function in leiomyosarcoma cancer cells (SKUT-1) and breast cancer-associated fibroblasts (CAFs), which were used as a model system. We found that insulin transactivates the GPER1 promoter sequence and increases the mRNA and protein expression of GPER1 through the activation of the PRKCD/MAPK1/c-Fos/AP1 transduction pathway, as ascertained by means of specific pharmacological inhibitors and gene-silencing experiments. Moreover, cell migration triggered by insulin occurred through GPER1 and its main target gene CTGF, whereas the insulin-induced expression of GPER1 boosted cell-cycle progression and the glucose uptake stimulated by estrogens. Notably, a positive correlation between insulin serum levels and GPER1 expression was found in cancer fibroblasts obtained from breast cancer patients. Altogether, our data indicate that GPER1 may be included among the complex network of transduction signaling triggered by insulin that drives cells toward cancer progression.

Cells ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 203 ◽  
Author(s):  
Adele Vivacqua ◽  
Anna Sebastiani ◽  
Anna Miglietta ◽  
Damiano Rigiracciolo ◽  
Francesca Cirillo ◽  
...  

Estrogens acting through the classic estrogen receptors (ERs) and the G protein estrogen receptor (GPER) regulate the expression of diverse miRNAs, small sequences of non-coding RNA involved in several pathophysiological conditions, including breast cancer. In order to provide novel insights on miRNAs regulation by estrogens in breast tumor, we evaluated the expression of 754 miRNAs by TaqMan Array in ER-negative and GPER-positive SkBr3 breast cancer cells and cancer-associated fibroblasts (CAFs) upon 17β-estradiol (E2) treatment. Various miRNAs were regulated by E2 in a peculiar manner in SkBr3 cancer cells and CAFs, while miR-338-3p displayed a similar regulation in both cell types. By METABRIC database analysis we ascertained that miR-338-3p positively correlates with overall survival in breast cancer patients, according to previous studies showing that miR-338-3p may suppress the growth and invasion of different cancer cells. Well-fitting with these data, a miR-338-3p mimic sequence decreased and a miR-338-3p inhibitor sequence rescued the expression of genes and the proliferative effects induced by E2 through GPER in SkBr3 cancer cells and CAFs. Altogether, our results provide novel evidence on the molecular mechanisms by which E2 may regulate miR-338-3p toward breast cancer progression.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Yifan Wang ◽  
Ruocen Liao ◽  
Xingyu Chen ◽  
Xuhua Ying ◽  
Guanping Chen ◽  
...  

Abstract Breast cancer is considered to be the most prevalent cancer in women worldwide, and metastasis is the primary cause of death. Protease-activated receptor 1 (PAR1) is a GPCR family member involved in the invasive and metastatic processes of cancer cells. However, the functions and underlying mechanisms of PAR1 in breast cancer remain unclear. In this study, we found that PAR1 is highly expressed in high invasive breast cancer cells, and predicts poor prognosis in ER-negative and high-grade breast cancer patients. Mechanistically, Twist transcriptionally induces PAR1 expression, leading to inhibition of Hippo pathway and activation of YAP/TAZ; Inhibition of PAR1 suppresses YAP/TAZ-induced epithelial-mesenchymal transition (EMT), invasion, migration, cancer stem cell (CSC)-like properties, tumor growth and metastasis of breast cancer cells in vitro and in vivo. These findings suggest that PAR1 acts as a direct transcriptionally target of Twist, can promote EMT, tumorigenicity and metastasis by controlling the Hippo pathway; this may lead to a potential therapeutic target for treating invasive breast cancer.


2021 ◽  
Vol 17 (12) ◽  
pp. 2364-2373
Author(s):  
Song Wang ◽  
Zifeng Luo ◽  
Xinke Zhou ◽  
Chong Wang ◽  
Yuanwei Luo ◽  
...  

Breast cancer is still threatening many people’ lives, hence novel targeted therapies are urgently required to improve the poor outcome of breast cancer patients. Herein, our study aimed to explore the potential of nanoparticles (NPs)-loaded with VEGF inhibitors and MED1 siRNA for treatment of the disorder. PEG and MTC conjugates were synthesized by ion gelation, and equipped with VEGF inhibitor (siV) and MED1 (siD) siRNA (MT/PC/siV-D NPs). The size and morphology of the NPs were detected by TEM. Agarose gel experiment was performed to detect drug encapsulation rate and NPs stability. Zeta potential was assessed by immunofluorescence assay and cell uptake was detected by fluorescence analysis. After cancer cells were treated with NPs or PBS, cell proliferation and invasion were evaluated with VEGF and MED1 expression was detected by Western blot and RT-qPCR analyses. Animal model was conducted to confirm the role of NPs in tumor growth. Results showed that, the MT/PC/siV-D NPs exhibited great stability, drug encapsulation and internalization ability. The combined NPs caused decreased proliferation and invasion of tumor cells, inducing M2 macrophages to re-polarize to M1 type with declined expression of VEGF and MED1. Moreover, the NPs remarkably alleviated breast tumor progression. The multifunctional NPs equipped with EGF inhibitors and MED1 siRNA can inhibit tumor progression by targeting TAMs and cancer cells during breast cancer.


Author(s):  
Hairul-Islam Ibrahim ◽  
Mohammad Bani Ismail ◽  
Rebai Ben Ammar ◽  
Emad Ahmed

Chemo-resistance and metastatic disease development are the most common causes of breast cancer recurrence and death. Thidiazuron (TDZ) is a plant growth regulator, its biological role on human and animals has not been yet clarified. In the present study, we investigated the anticancer activity of this plant phytohormone on the drug resistant-triple negative breast cancer MDA-MB-231 cell line. Treatment of the breast cancer cells with TDZ (1-50 μM) caused more stressful environment and induced a significant increase in percentages of active caspases positive cells. In addition, TDZ treatment (5 and 10 μM) significantly attenuated the migration and the invasion activities of these highly metastatic cancer cells. Mechanistically, TDZ reducesd cancer progression and invasive activity through targeting miR-202-5p, which stimulatesd the expression of the phosphatase and tensin homolog (PTEN), the tumor suppressor that downregulates PI3K/AKT signaling pathway. In the meantime, TDZ treatment statistically upregulatesd the suppressor of breast cancer proliferation, miRNA-132 that is also implicated in dysregulating the TEN-AKT/the nuclear factor NFκB signaling pathway. Interestingly, our molecular docking analysis revealed potential non-covalent interaction between TDZ with AKT, PTEN and PI3K. These findings suggest that TDZ may suppresses breast cancer metastasis through targeting miRNA-132, miR-202-5p/PTEN and PI3K/AKT downstream molecules.


2020 ◽  
Vol 39 (3) ◽  
pp. 711-720 ◽  
Author(s):  
Mari Hosonaga ◽  
Hideyuki Saya ◽  
Yoshimi Arima

Abstract Metastasis of cancer cells to the brain occurs frequently in patients with certain subtypes of breast cancer. In particular, patients with HER2-positive or triple-negative breast cancer are at high risk for the development of brain metastases. Despite recent advances in the treatment of primary breast tumors, the prognosis of breast cancer patients with brain metastases remains poor. A better understanding of the molecular and cellular mechanisms underlying brain metastasis might be expected to lead to improvements in the overall survival rate for these patients. Recent studies have revealed complex interactions between metastatic cancer cells and their microenvironment in the brain. Such interactions result in the activation of various signaling pathways related to metastasis in both cancer cells and cells of the microenvironment including astrocytes and microglia. In this review, we focus on such interactions and on their role both in the metastatic process and as potential targets for therapeutic intervention.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e21029-e21029
Author(s):  
Christopher Neal ◽  
Sujita Sukumaran ◽  
Vishal Gupta ◽  
Insiya Jafferji ◽  
Dave Hasegawa ◽  
...  

e21029 Background: Up-regulation of epithelial mesenchymal transition (EMT) and the reduction of epithelial marker expression is associated with invasion, cancer progression, resistance to conventional therapies and poor prognosis. ApoStream, a novel continuous flow dielectrophoresis field-flow fractionation (DEP-FFF) device, was used to enable antibody-independent capture of circulating cancer cells (CCCs,also referred to as circulating tumor cells, CTC) for subsequent phenotyping of EMT markers. Methods: A side-by-side comparison of CellSearch and ApoStream was performed on 10 metastatic breast cancer patients. A multiplexed immunofluorescent assay and laser scanning cytometry analyses were used to unambiguously identify CK+/CD45–/DAPI+ CCCs and quantify their EpCAM and vimentin expression. Results: ApoStream recovered CK+/CD45–/DAPI+ CCCs from each breast cancer patient sample tested (mean=255 CCCs per 7.5 ml blood, see Table). ApoStream consistently recovered significantly higher number of CCCs compared to CellSearch (p=0.024). ApoStream recovered both EpCAM+ and EpCAM– CCCs in 50% and 90% of patients, respectively. Vimentin+ CCCs were isolated from 90% of patients. Conclusions: ApoStream’s higher capture efficiency demonstrated the majority of CCCs from breast cancer patients were EpCAM negative and vimentin-positive. ApoStream technology can be used to monitor CCCs undergoing EMT. [Table: see text]


2021 ◽  
Vol 43 (3) ◽  
pp. 1726-1740
Author(s):  
Mayu Imamura ◽  
Tiantian Li ◽  
Chunning Li ◽  
Masayoshi Fujisawa ◽  
Naofumi Mukaida ◽  
...  

The chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2) is shown to promote the progression of breast cancer. We previously identified cancer cell-derived granulocyte-macrophage colony-stimulating factor (GM-CSF) as a potential regulator of MCP-1 production in the murine 4T1 breast cancer, but it played a minimum role in overall MCP-1 production. Here, we evaluated the crosstalk between 4T1 cells and fibroblasts. When fibroblasts were co-cultured with 4T1 cells or stimulated with the culture supernatants of 4T1 cells (4T1-sup), MCP-1 production by fibroblasts markedly increased. 4T1 cells expressed mRNA for platelet-derived growth factor (PDGF)-a, b and c, and the PDGF receptor inhibitor crenolanib almost completely inhibited 4T1-sup-induced MCP-1 production by fibroblasts. However, PDGF receptor antagonists failed to reduce MCP-1 production in tumor-bearing mice. Histologically, 4T1 tumors contained a small number of αSMA-positive fibroblasts, and Mcp-1 mRNA was mainly associated with macrophages, especially those surrounding necrotic lesions on day 14, by in situ hybridization. Thus, although cancer cells have the capacity to crosstalk with fibroblasts via PDGFs, this crosstalk does not play a major role in MCP-1 production or cancer progression in this model. Unraveling complex crosstalk between cancer cells and stromal cells will help us identify new targets to help treat breast cancer patients.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2014 ◽  
Author(s):  
Daniel Andrade ◽  
Meghna Mehta ◽  
James Griffith ◽  
Sangphil Oh ◽  
Joshua Corbin ◽  
...  

Tumor suppressor ARID1A, a subunit of the chromatin remodeling complex SWI/SNF, regulates cell cycle progression, interacts with the tumor suppressor TP53, and prevents genomic instability. In addition, ARID1A has been shown to foster resistance to cancer therapy. By promoting non-homologous end joining (NHEJ), ARID1A enhances DNA repair. Consequently, ARID1A has been proposed as a promising therapeutic target to sensitize cancer cells to chemotherapy and radiation. Here, we report that ARID1A is regulated by human antigen R (HuR), an RNA-binding protein that is highly expressed in a wide range of cancers and enables resistance to chemotherapy and radiation. Our results indicate that HuR binds ARID1A mRNA, thereby increasing its stability in breast cancer cells. We further find that ARID1A expression suppresses the accumulation of DNA double-strand breaks (DSBs) caused by radiation and can rescue the loss of radioresistance triggered by HuR inhibition, suggesting that ARID1A plays an important role in HuR-driven resistance to radiation. Taken together, our work shows that HuR and ARID1A form an important regulatory axis in radiation resistance that can be targeted to improve radiotherapy in breast cancer patients.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 543
Author(s):  
Giuseppina Augimeri ◽  
Daniela Bonofiglio

Over the last decades, the breast tumor microenvironment (TME) has been increasingly recognized as a key player in tumor development and progression and as a promising prognostic and therapeutic target for breast cancer patients. The breast TME, representing a complex network of cellular signaling—deriving from different stromal cell types as well as extracellular matrix components, extracellular vesicles, and soluble growth factors—establishes a crosstalk with cancer cells sustaining tumor progression. A significant emphasis derives from the tumor surrounding inflammation responsible for the failure of the immune system to effectively restrain breast cancer growth. Thus, effective therapeutic strategies require a deeper understanding of the interplay between tumor and stroma, aimed at targeting both the intrinsic neoplastic cells and the extrinsic surrounding stroma. In this scenario, peroxisome proliferator-activated receptor (PPAR) γ, primarily known as a metabolic regulator, emerged as a potential target for breast cancer treatment since it functions in breast cancer cells and several components of the breast TME. In particular, the activation of PPARγ by natural and synthetic ligands inhibits breast cancer cell growth, motility, and invasiveness. Moreover, activated PPARγ may educate altered stromal cells, counteracting the pro-inflammatory milieu that drive breast cancer progression. Interestingly, using Kaplan–Meier survival curves, PPARγ also emerges as a prognostically favorable factor in breast cancer patients. In this perspective, we briefly discuss the mechanisms by which PPARγ is implicated in tumor biology as well as in the complex regulatory networks within the breast TME. This may help to profile approaches that provide a simultaneous inhibition of epithelial cells and TME components, offering a more efficient way to treat breast cancer.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 858
Author(s):  
Jagyeong Oh ◽  
Davide Pradella ◽  
Changwei Shao ◽  
Hairi Li ◽  
Namjeong Choi ◽  
...  

Aberrant alternative splicing (AS) is a hallmark of cancer and a potential target for novel anti-cancer therapeutics. Breast cancer-associated AS events are known to be linked to disease progression, metastasis, and survival of breast cancer patients. To identify altered AS programs occurring in metastatic breast cancer, we perform a global analysis of AS events by using RNA-mediated oligonucleotide annealing, selection, and ligation coupled with next-generation sequencing (RASL-seq). We demonstrate that, relative to low-metastatic, high-metastatic breast cancer cells show different AS choices in genes related to cancer progression. Supporting a global reshape of cancer-related splicing profiles in metastatic breast cancer we found an enrichment of RNA-binding motifs recognized by several splicing regulators, which have aberrant expression levels or activity during breast cancer progression, including SRSF1. Among SRSF1-regulated targets we found DCUN1D5, a gene for which skipping of exon 4 in its pre-mRNA introduces a premature termination codon (PTC), thus generating an unstable transcript degraded by nonsense-mediated mRNA decay (NMD). Significantly, distinct breast cancer subtypes show different DCUN1D5 isoform ratios with metastatic breast cancer expressing the highest level of the NMD-insensitive DCUN1D5 mRNA, thus showing high DCUN1D5 expression levels, which are ultimately associated with poor overall and relapse-free survival in breast cancer patients. Collectively, our results reveal global AS features of metastatic breast tumors, which open new possibilities for the treatment of these aggressive tumor types.


Sign in / Sign up

Export Citation Format

Share Document