scholarly journals Tumor progression, metastasis, and modulators of epithelial–mesenchymal transition in endometrioid endometrial carcinoma: an update

2015 ◽  
Vol 23 (2) ◽  
pp. R85-R111 ◽  
Author(s):  
Annu Makker ◽  
Madhu Mati Goel

Endometrioid endometrial carcinoma (EEC), also known as type 1 endometrial cancer (EC), accounts for over 70–80% of all cases that are usually associated with estrogen stimulation and often develops in a background of atypical endometrial hyperplasia. The increased incidence of EC is mainly confined to this type of cancer. Most EEC patients present at an early stage and generally have a favorable prognosis; however, up to 30% of EEC present as high risk tumors, which have invaded deep into the myometrium at diagnosis and progressively lead to local or extra pelvic metastasis. The poor survival of advanced EC is related to the lack of effective therapies, which can be attributed to poor understanding of the molecular mechanisms underlying the progression of disease toward invasion and metastasis. Multiple lines of evidence illustrate that epithelial–mesenchymal transition (EMT)-like events are central to tumor progression and malignant transformation, endowing the incipient cancer cell with invasive and metastatic properties. The aim of this review is to summarize the current knowledge on molecular events associated with EMT in progression, invasion, and metastasis of EEC. Further, the role of epigenetic modifications and microRNA regulation, tumor microenvironment, and microcystic elongated and fragmented glands like invasion pattern have been discussed. We believe this article may perhaps stimulate further research in this field that may aid in identifying high risk patients within this clinically challenging patient group and also lead to the recognition of novel targets for the prevention of metastasis – the most fatal consequence of endometrial carcinogenesis.

Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 476 ◽  
Author(s):  
Chia-Jung Li ◽  
Pei-Yi Chu ◽  
Giou-Teng Yiang ◽  
Meng-Yu Wu

The transforming growth factor-β (TGF-β) signaling pathway plays multiple regulatory roles in the tumorigenesis and development of cancer. TGF-β can inhibit the growth and proliferation of epithelial cells and induce apoptosis, thereby playing a role in inhibiting breast cancer. Therefore, the loss of response in epithelial cells that leads to the inhibition of cell proliferation due to TGF-β is a landmark event in tumorigenesis. As tumors progress, TGF-β can promote tumor cell invasion, metastasis, and drug resistance. At present, the above-mentioned role of TGF-β is related to the interaction of multiple signaling pathways in the cell, which can attenuate or abolish the inhibition of proliferation and apoptosis-promoting effects of TGF-β and enhance its promotion of tumor progression. This article focuses on the molecular mechanisms through which TGF-β interacts with multiple intracellular signaling pathways in tumor progression and the effects of these interactions on tumorigenesis.


2021 ◽  
Vol 39 (3_suppl) ◽  
pp. 241-241
Author(s):  
Jugang Wu ◽  
Jiwei Yu ◽  
Yan Gu

241 Background: Aberrant epigenetic modification induces oncogenes expression and promotes cancer development. The histone lysine methyltransferase SETD1A, which specifically methylates H3K4, is involved in tumor growth and metastasis, and its ectopic expression has been detected in aggressive malignancies. Our previous study had reported that SETD1A promoted gastric cancer (GC) proliferation and tumorigenesis. However, the function and molecular mechanisms of SETD1A in GC metastasis remain to be elucidated. Methods: Transwell migration and invasion assay were performed to determine GC cell migration and invasion. Lung metastasis assay was used to detect GC cell metastasis. Western Blot and Real-time qPCR were performed to measure the protein and mRNA levels, respectively. ChIP assay was performed to investigate the methylation of H3K4. The correlation between SETD1A and EMT associated key genes in GC were performed by bioinformatic analysis. Results: In this study, we found that overexpression of SETD1A promotes GC migration and invasion, whereas knockdown of SETD1A suppressed GC migration, invasion and metastasis. Furthermore, knockdown of SETD1A suppressed GC epithelial-mesenchymal transition (EMT) by increasing the expression of epithelial marker E-cadherin, and decreasing the expression of mesenchymal markers, including N-cadherin, Fibronectin and Vimentin. Mechanistically, knockdown of SETD1A reduced the EMT key transcriptional factors snail. SETD1A was recruited to the promoter of snail, where SETD1A could methylate H3K4. However, knockdown of SETD1A decreased the methylation of H3K4 on snail promoter. Rescue of snail restored SETD1A knockdown-induced GC migration and invasion inhibition. In addition, linear correlation between SETD1A and several key EMT genes, including E-cadherin, Fibronectin and snail, in GC specimens obtained from TCGA dataset. Conclusions: In summary, our data reveals that SETD1A mediated EMT process and induced metastasis through epigenetic reprogramming of snail.


2019 ◽  
Vol 20 (8) ◽  
pp. 2042 ◽  
Author(s):  
Hyunkoo Kang ◽  
Hyunwoo Kim ◽  
Sungmin Lee ◽  
HyeSook Youn ◽  
BuHyun Youn

Activation of epithelial–mesenchymal transition (EMT) is thought to be an essential step for cancer metastasis. Tumor cells undergo EMT in response to a diverse range of extra- and intracellular stimulants. Recently, it was reported that metabolic shifts control EMT progression and induce tumor aggressiveness. In this review, we summarize the involvement of altered glucose, lipid, and amino acid metabolic enzyme expression and the underlying molecular mechanisms in EMT induction in tumor cells. Moreover, we propose that metabolic regulation through gene-specific or pharmacological inhibition may suppress EMT and this treatment strategy may be applied to prevent tumor progression and improve anti-tumor therapeutic efficacy. This review presents evidence for the importance of metabolic changes in tumor progression and emphasizes the need for further studies to better understand tumor metabolism.


ISRN Oncology ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Suttichai Krisanaprakornkit ◽  
Anak Iamaroon

Oral cancer is one of the drastic human cancers due to its aggressiveness and high mortality rate. Of all oral cancers, squamous cell carcinoma is the most common accounting for more than 90%. Epithelial-mesenchymal transition (EMT) is suggested to play an important role during cancer invasion and metastasis. Recently, emerging knowledge on EMT in carcinogenesis is explosive, tempting us to analyze previous studies on EMT in oral squamous cell carcinoma (OSCC). In this paper, we have first addressed the general molecular mechanisms of EMT, evidenced by alterations of cell morphology during EMT, the presence of cadherin switching, turning on and turning off of many specific genes, the activation of various signaling pathways, and so on. The remaining part of this paper will focus on recent findings of the investigations of EMT on OSCC. These include the evidence of EMT taking place in OSCC and the signaling pathways employed by OSCC cells during their invasion and metastasis. Collectively, with the large body of new knowledge on EMT in OSCC elaborated here, we are hopeful that targeting treatment for OSCC will be developed.


Acta Naturae ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 4-23
Author(s):  
A. V. Gaponova ◽  
S. Rodin ◽  
A. A. Mazina ◽  
P. V. Volchkov

About 90% of all malignant tumors are of epithelial nature. The epithelial tissue is characterized by a close interconnection between cells through cellcell interactions, as well as a tight connection with the basement membrane, which is responsible for cell polarity. These interactions strictly determine the location of epithelial cells within the body and are seemingly in conflict with the metastatic potential that many cancers possess (the main criteria for highly malignant tumors). Tumor dissemination into vital organs is one of the primary causes of death in patients with cancer. Tumor dissemination is based on the so-called epithelialmesenchymal transition (EMT), a process when epithelial cells are transformed into mesenchymal cells possessing high mobility and migration potential. More and more studies elucidating the role of the EMT in metastasis and other aspects of tumor progression are published each year, thus forming a promising field of cancer research. In this review, we examine the most recent data on the intracellular and extracellular molecular mechanisms that activate EMT and the role they play in various aspects of tumor progression, such as metastasis, apoptotic resistance, and immune evasion, aspects that have usually been attributed exclusively to cancer stem cells (CSCs). In conclusion, we provide a detailed review of the approved and promising drugs for cancer therapy that target the components of the EMT signaling pathways.


2017 ◽  
Vol 37 (2) ◽  
Author(s):  
Li Zhang ◽  
Huaijun Liu ◽  
Xiaodan Mu ◽  
Jianling Cui ◽  
Zhigang Peng

Aberrant expression of Fos-related antigen-1 (Fra1) is commonly elevated in various malignant cancers and is strongly implicated in invasion and metastasis. However, the molecular mechanisms underlying its dysregulation in human glioma remain poorly understood. In the present study, we demonstrate that up-regulation of Fra1 plays a crucial role in the glioma aggressiveness and epithelial–mesenchymal transition (EMT) activated by Wnt/β-catenin signal pathway. In glioma cells, activation of Wnt/β-catenin signalling by Wnt3a administration obviously induced EMT and directly activated the transcription of Fra1. Phenotype experiments revealed that up-regulation of Fra1 induced by Wnt/β-catenin signalling drove the EMT of glioma cells. Furthermore, it was found that the cisplatin resistance acquired by Wnt/β-catenin signalling activation depended on increased expression of Fra1. Analysis of clinical specimens verified a positive correlation between Fra1 and β-catenin as well as a poor prognosis in glioma patients with double-high expressions of them. These findings indicate that an aberrant Wnt/β-catenin signalling leads to the EMT and drug resistance of glioma via Fra1 induction, which suggests novel therapeutic strategies for the malignant disease.


2012 ◽  
Vol 43 (5) ◽  
pp. 632-643 ◽  
Author(s):  
Nuria Montserrat ◽  
Ana Mozos ◽  
David Llobet ◽  
Xavier Dolcet ◽  
Cristina Pons ◽  
...  

2019 ◽  
Vol 3 (9) ◽  
Author(s):  
Rattiyaporn Kanlaya ◽  
Visith Thongboonkerd

ABSTRACT Chronic kidney disease (CKD) is a common public health problem worldwide characterized by gradual decline of renal function over months/years accompanied by renal fibrosis and failure in tissue wound healing after sustained injury. Patients with CKD frequently present with profound signs/symptoms that require medical treatment, mostly culminating in hemodialysis and renal transplantation. To prevent CKD more efficiently, there is an urgent need for better understanding of the pathogenic mechanisms and molecular pathways of the disease pathogenesis and progression, and for developing novel therapeutic targets. Recently, several lines of evidence have shown that epigallocatechin-3-gallate (EGCG), an abundant phytochemical polyphenol derived from Camellia sinensis, might be a promising bioactive compound for prevention of CKD development/progression. This review summarizes current knowledge of molecular mechanisms underlying renoprotective roles of EGCG in CKD based on available preclinical evidence (from both in vitro and in vivo animal studies), particularly its antioxidant property through preservation of mitochondrial function and activation of Nrf2 (nuclear factor erythroid 2-related factor 2)/HO-1 (heme oxygenase-1) signaling, anti-inflammatory activity, and protective effect against epithelial mesenchymal transition. Finally, future perspectives, challenges, and concerns regarding its clinical use in CKD and renal fibrosis are discussed.


Diagnostics ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 563
Author(s):  
David Kalfert ◽  
Marie Ludvikova ◽  
Martin Pesta ◽  
Jaroslav Ludvik ◽  
Lucie Dostalova ◽  
...  

MiR-34a belongs to the class of small non-coding regulatory RNAs and functions as a tumor suppressor. Under physiological conditions, miR-34a has an inhibitory effect on all processes related to cell proliferation by targeting many proto-oncogenes and silencing them on the post-transcriptional level. However, deregulation of miR-34a was shown to play important roles in tumorigenesis and processes associated with cancer progression, such as tumor-associated epithelial-mesenchymal transition, invasion, and metastasis. Moreover, further understanding of miR-34a molecular mechanisms in cancer are indispensable for the development of effective diagnosis and treatments. In this review, we summarized the current knowledge on miR-34a functions in human disease with an emphasis on its regulation and dysregulation, its role in human cancer, specifically head and neck squamous carcinoma and thyroid cancer, and emerging role as a disease diagnostic and prognostic biomarker and the novel therapeutic target in oncology.


Sign in / Sign up

Export Citation Format

Share Document