scholarly journals TRIB1 downregulates hepatic lipogenesis and glycogenesis via multiple molecular interactions

2014 ◽  
Vol 52 (2) ◽  
pp. 145-158 ◽  
Author(s):  
Yuumi Ishizuka ◽  
Kazuhiro Nakayama ◽  
Ayumi Ogawa ◽  
Saho Makishima ◽  
Supichaya Boonvisut ◽  
...  

Mammalian tribbles homolog 1 (TRIB1) regulates hepatic lipogenesis and is genetically associated with plasma triglyceride (TG) levels and cholesterol, but the molecular mechanisms remain obscure. We explored these mechanisms in mouse livers transfected with a TRIB1 overexpression, a shRNA template or a control (LacZ) adenovirus vector. The overexpression of TRIB1 reduced, whereas induction of the shRNA template increased, plasma glucose, TG, and cholesterol and simultaneously hepatic TG and glycogen levels. The involvement of TRIB1 in hepatic lipid accumulation was supported by the findings of a human SNP association study. A TRIB1 SNP, rs6982502, was identified in an enhancer sequence, modulated enhancer activity in reporter gene assays, and was significantly (P=9.39×10−7) associated with ultrasonographically diagnosed non-alcoholic fatty liver disease in a population of 5570 individuals. Transcriptome analyses of mouse livers revealed significant modulation of the gene sets involved in glycogenolysis and lipogenesis. Enforced TRIB1 expression abolished CCAAT/enhancer binding protein A (CEBPA), CEBPB, and MLXIPL proteins, whereas knockdown increased the protein level. Levels of TRIB1 expression simultaneously affected MKK4 (MAP2K4), MEK1 (MAP2K1), and ERK1/2 (MAPK1/3) protein levels and the phosphorylation of JNK, but not of ERK1/2. Pull-down and mammalian two-hybrid analyses revealed novel molecular interaction between TRIB1 and a hepatic lipogenic master regulator, MLXIPL. Co-expression of TRIB1 and CEBPA or MLXIPL reduced their protein levels and proteasome inhibitors attenuated the reduction. These data suggested that the modulation of TRIB1 expression affects hepatic lipogenesis and glycogenesis through multiple molecular interactions.

Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2244
Author(s):  
Martijn R. Molenaar ◽  
Louis C. Penning ◽  
J. Bernd Helms

Lipids play Jekyll and Hyde in the liver. On the one hand, the lipid-laden status of hepatic stellate cells is a hallmark of healthy liver. On the other hand, the opposite is true for lipid-laden hepatocytes—they obstruct liver function. Neglected lipid accumulation in hepatocytes can progress into hepatic fibrosis, a condition induced by the activation of stellate cells. In their resting state, these cells store substantial quantities of fat-soluble vitamin A (retinyl esters) in large lipid droplets. During activation, these lipid organelles are gradually degraded. Hence, treatment of fatty liver disease is treading a tightrope—unsophisticated targeting of hepatic lipid accumulation might trigger problematic side effects on stellate cells. Therefore, it is of great importance to gain more insight into the highly dynamic lipid metabolism of hepatocytes and stellate cells in both quiescent and activated states. In this review, part of the special issue entitled “Cellular and Molecular Mechanisms underlying the Pathogenesis of Hepatic Fibrosis 2020”, we discuss current and highly versatile aspects of neutral lipid metabolism in the pathogenesis of non-alcoholic fatty liver disease (NAFLD).


2021 ◽  
Vol 12 ◽  
Author(s):  
Yang Yu ◽  
Lina Yu ◽  
Nuo Cheng ◽  
Xiaoguang Liu ◽  
Chunlu Fang ◽  
...  

Background: Apolipoprotein A5 (ApoA5), an important modulator of plasma and hepatic triglyceride metabolism, has been found to be downregulated by metformin to improve non-alcoholic fatty liver disease. Meanwhile, exercise has been recommended as a therapeutic strategy for non-alcoholic steatohepatitis (NASH). However, no study has yet determined whether exercise affects hepatic ApoA5 expression or the inhibition of ApoA5 to toll-like receptor 4 (TLR4). We herein examined the effects of exercise on hepatic ApoA5 expression and the relevance of ApoA5 and TLR4-mediated pathway in mice with high-fat diet (HFD)-induced NASH.Methods: Male C57BL/6J mice were built NASH model with high-fat diet for 12 weeks, and following mice were subjected to exercise for 12 weeks on a treadmill. Microscopy and enzyme-linked immunosorbent assay were used to measure histological analysis of liver and hepatic lipids, respectively. Quantitative real-time PCR and western blot were used to determined mRNA and protein levels of ApoA5 and TLR4-mediated nuclear factor kappa B (NF-κB) pathway components, respectively. ApoA5 overexpression plasmids transfected into mice to investigate the relevance of ApoA5 and TLR4.Results: 12 weeks of exercise remarkably alleviated HFD-induced hepatic lipid accumulation, inflammation, and fibrosis, as well as reduced serum lipopolysaccharide (LPS), hepatic TLR4, myeloid differentiation factor 88 (MyD88), and NF-κBp65 expression. Importantly, exercise did not reduce ApoA5 expression but instead enhanced its ability to suppress TLR4-mediated NF-κB pathway components by decreasing circulating LPS in our experiments involving transfection of ApoA5 overexpression plasmids and LPS interventions.Conclusion: The results demonstrated that exercise improved HFD-induced NASH by triggering the inhibitory effects of ApoA5 on the TLR4-mediated NF-κB pathway.


2008 ◽  
Vol 182 (3) ◽  
pp. 449-458 ◽  
Author(s):  
Toru Sasaki ◽  
Edyta Marcon ◽  
Tracy McQuire ◽  
Yoichi Arai ◽  
Peter B. Moens ◽  
...  

Meiosis is critical for sexual reproduction. During meiosis, the dynamics and integrity of homologous chromosomes are tightly regulated. The genetic and molecular mechanisms governing these processes in vivo, however, remain largely unknown. In this study, we demonstrate that Bat3/Scythe is essential for survival and maintenance of male germ cells (GCs). Targeted inactivation of Bat3/Scythe in mice results in widespread apoptosis of meiotic male GCs and complete male infertility. Pachytene spermatocytes exhibit abnormal assembly and disassembly of synaptonemal complexes as demonstrated by abnormal SYCP3 staining and sustained γ-H2AX and Rad51/replication protein A foci. Further investigation revealed that a testis-specific protein, Hsp70-2/HspA2, is absent in Bat3-deficient male GCs at any stage of spermatogenesis; however, Hsp70-2 transcripts are expressed at normal levels. We found that Bat3 deficiency induces polyubiquitylation and subsequent degradation of Hsp70-2. Inhibition of proteasomal degradation restores Hsp70-2 protein levels. Our findings identify Bat3 as a critical regulator of Hsp70-2 in spermatogenesis, thereby providing a possible molecular target in idiopathic male infertility.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lidan Liu ◽  
Chaim Z. Aron ◽  
Cullen M. Grable ◽  
Adrian Robles ◽  
Xiangli Liu ◽  
...  

AbstractLevels of intestinal toll-like receptor 4 (TLR4) impact inflammation in the neonatal gastrointestinal tract. While surfactant protein A (SP-A) is known to regulate TLR4 in the lung, it also reduces intestinal damage, TLR4 and inflammation in an experimental model of necrotizing enterocolitis (NEC) in neonatal rats. We hypothesized that SP-A-deficient (SP-A−/−) mice have increased ileal TLR4 and inflammatory cytokine levels compared to wild type mice, impacting intestinal physiology. We found that ileal TLR4 and proinflammatory cytokine levels were significantly higher in infant SP-A−/− mice compared to wild type mice. Gavage of neonatal SP-A−/− mice with purified SP-A reduced ileal TLR4 protein levels. SP-A reduced expression of TLR4 and proinflammatory cytokines in normal human intestinal epithelial cells (FHs74int), suggesting a direct effect. However, incubation of gastrointestinal cell lines with proteasome inhibitors did not abrogate the effect of SP-A on TLR4 protein levels, suggesting that proteasomal degradation is not involved. In a mouse model of experimental NEC, SP-A−/− mice were more susceptible to intestinal stress resembling NEC, while gavage with SP-A significantly decreased ileal damage, TLR4 and proinflammatory cytokine mRNA levels. Our data suggests that SP-A has an extrapulmonary role in the intestinal health of neonatal mice by modulating TLR4 and proinflammatory cytokines mRNA expression in intestinal epithelium.


2021 ◽  
pp. 1-26
Author(s):  
Kenta Maegawa ◽  
Haruka Koyama ◽  
Satoru Fukiya ◽  
Atsushi Yokota ◽  
Koichiro Ueda ◽  
...  

Abstract Enterohepatic circulation of 12α-hydroxylated (12αOH) bile acid (BA) is enhanced depending on the energy intake in high-fat diet-fed rats. Such BA metabolism can be reproduced using a diet supplemented with cholic acid (CA), which also induces simple steatosis, without inflammation and fibrosis, accompanied by some other symptoms that are frequently observed in the condition of non-alcoholic fatty liver in rats. We investigated whether supplementation of the diet with raffinose (Raf) improves hepatic lipid accumulation induced by the CA-fed condition in rats. After acclimation to the AIN-93-based control diet, male Wistar rats were fed diets supplemented with a combination of Raf (30 g/kg diet) and/or CA (0.5 g/kg diet) for 4 weeks. Dietary Raf normalised hepatic triglyceride levels (two-way ANOVA P<0.001 for CA, P=0.02 for Raf, and P=0.004 for interaction) in the CA-supplemented diet-fed rats. Dietary Raf supplementation reduced hepatic 12αOH BA concentration (two-way ANOVA P<0.001 for CA, P=0.003 for Raf, and P=0.03 for interaction). The concentration of 12αOH BA was reduced in the aortic and portal plasma. Raf supplementation increased acetic acid concentration in the caecal contents (two-way ANOVA P=0.001 as a main effect). Multiple regression analysis revealed that concentrations of aortic 12αOH BA and caecal acetic acid could serve as predictors of hepatic triglyceride concentration (R2=0.55, P<0.001). However, Raf did not decrease the secondary 12αOH BA concentration in the caecal contents as well as the transaminase activity in the CA diet-fed rats. These results imply that dietary Raf normalises hepatic lipid accumulation via suppression of enterohepatic 12αOH BA circulation.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 153
Author(s):  
Min Seung Lee ◽  
So Hyun Lim ◽  
Ah-Ran Yu ◽  
Chi Yeon Hwang ◽  
Insug Kang ◽  
...  

Proteasome inhibitors, such as bortezomib (BZ) and carfilzomib (CFZ), have been suggested as treatments for various cancers. To utilize BZ and/or CFZ as effective therapeutics for treating melanoma, we studied their molecular mechanisms using B16-F1 melanoma cells. Flow cytometry of Annexin V-fluorescein isothiocyanate-labeled cells indicated apoptosis induction by treatment with BZ and CFZ. Apoptosis was evidenced by the activation of various caspases, including caspase 3, 8, 9, and 12. Treatment with BZ and CFZ induced endoplasmic reticulum (ER) stress, as indicated by an increase in eIF2α phosphorylation and the expression of ER stress-associated proteins, including GRP78, ATF6α, ATF4, XBP1, and CCAAT/enhancer-binding protein homologous protein. The effects of CFZ on ER stress and apoptosis were lower than that of BZ. Nevertheless, CFZ and BZ synergistically induced ER stress and apoptosis in B16-F1 cells. Furthermore, the combinational pharmacological interactions of BZ and CFZ against the growth of B16-F1 melanoma cells were assessed by calculating the combination index and dose-reduction index with the CompuSyn software. We found that the combination of CFZ and BZ at submaximal concentrations could obtain dose reduction by exerting synergistic inhibitory effects on cell growth. Moreover, this drug combination reduced tumor growth in C57BL/6 syngeneic mice. Taken together, these results suggest that CFZ in combination with BZ may be a beneficial and potential strategy for melanoma treatment.


2021 ◽  
Vol 9 (1) ◽  
pp. e001975
Author(s):  
Nicolas Quezada ◽  
Ilse Valencia ◽  
Javiera Torres ◽  
Gregorio Maturana ◽  
Jaime Cerda ◽  
...  

IntroductionSystemic chronic low-grade inflammation has been linked to insulin resistance (IR) and non-alcoholic steatohepatitis (NASH). NOD-like receptor protein 3 (NLRP3) inflammasome and its final product, interleukin (IL)-1β, exert detrimental effects on insulin sensitivity and promote liver inflammation in murine models. Evidence linking hepatic NLRP3 inflammasome, systemic IR and NASH has been scarcely explored in humans. Herein, we correlated the hepatic abundance of NLRP3 inflammasome components and IR and NASH in humans.Research design and methodsMetabolically healthy (MH) (n=11) and metabolically unhealthy (MUH) (metabolic syndrome, n=21, and type 2 diabetes, n=14) subjects were recruited. Insulin sensitivity (homeostatic model assessment of IR (HOMA-IR) and Oral Glucose Sensitivity (OGIS120)), glycemic (glycated hemoglobin), and lipid parameters were determined by standard methods. Plasma cytokines were quantified by Magpix. Hepatic NLRP3 inflammasome components were determined at the mRNA and protein levels by reverse transcription–quantitative PCR and western blot, respectively. Liver damage was assessed by histological analysis (Non-alcoholic Fatty Liver Disease Activity Score (NAS) and Steatosis, Inflammatory Activity, and Fibrosis (SAF) scores). IR and liver histopathology were correlated with NLRP3 inflammasome components as well as with liver and plasma IL-1β levels.ResultsBody Mass Index, waist circumference, and arterial hypertension frequency were significantly higher in MUH subjects. These patients also had increased high-sensitivity C reactive protein levels compared with MH subjects. No differences in the plasma levels of IL-1β nor the hepatic content of Nlrp3, apoptosis-associated speck-like (Asc), Caspase-1, and IL-1β were detected between MUH and MH individuals. MUH subjects had significantly higher NAS and SAF scores, indicating more severe liver damage. However, histological severity did not correlate with the hepatic content of NLRP3 inflammasome components nor IL-1β levels.ConclusionOur results suggest that NLRP3 inflammasome activation is linked neither to IR nor to the inflammatory status of the liver in MUH patients.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Liang Guo ◽  
Jun-mei Xu ◽  
Lei Liu ◽  
Su-mei Liu ◽  
Rong Zhu

Pulmonary fibrosis is a severe disease that contributes to the morbidity and mortality of a number of lung diseases. However, the molecular and cellular mechanisms leading to lung fibrosis are poorly understood. This study investigated the roles of epithelial-mesenchymal transition (EMT) and the associated molecular mechanisms in bleomycin-induced lung fibrosis. The bleomycin-induced fibrosis animal model was established by intratracheal injection of a single dose of bleomycin. Protein expression was measured by Western blot, immunohistochemistry, and immunofluorescence. Typical lesions of lung fibrosis were observed 1 week after bleomycin injection. A progressive increase in MMP-2, S100A4,α-SMA, HIF-1α, ZEB1, CD44, phospho-p44/42 (p-p44/42), and phospho-p38 MAPK (p-p38) protein levels as well as activation of EMT was observed in the lung tissues of bleomycin mice. Hypoxia increased HIF-1αand ZEB1 expression and activated EMT in H358 cells. Also, continuous incubation of cells under mild hypoxic conditions increased CD44, p-p44/42, and p-p38 protein levels in H358 cells, which correlated with the increase in S100A4 expression. In conclusion, bleomycin induces progressive lung fibrosis, which may be associated with activation of EMT. The fibrosis-induced hypoxia may further activate EMT in distal alveoli through a hypoxia-HIF-1α-ZEB1 pathway and promote the differentiation of lung epithelial cells into fibroblasts through phosphorylation of p38 MAPK and Erk1/2 proteins.


2003 ◽  
Vol 23 (9) ◽  
pp. 3173-3185 ◽  
Author(s):  
Sylvia C. Dryden ◽  
Fatimah A. Nahhas ◽  
James E. Nowak ◽  
Anton-Scott Goustin ◽  
Michael A. Tainsky

ABSTRACT Studies of yeast have shown that the SIR2 gene family is involved in chromatin structure, transcriptional silencing, DNA repair, and control of cellular life span. Our functional studies of human SIRT2, a homolog of the product of the yeast SIR2 gene, indicate that it plays a role in mitosis. The SIRT2 protein is a NAD-dependent deacetylase (NDAC), the abundance of which increases dramatically during mitosis and is multiply phosphorylated at the G2/M transition of the cell cycle. Cells stably overexpressing the wild-type SIRT2 but not missense mutants lacking NDAC activity show a marked prolongation of the mitotic phase of the cell cycle. Overexpression of the protein phosphatase CDC14B, but not its close homolog CDC14A, results in dephosphorylation of SIRT2 with a subsequent decrease in the abundance of SIRT2 protein. A CDC14B mutant defective in catalyzing dephosphorylation fails to change the phosphorylation status or abundance of SIRT2 protein. Addition of 26S proteasome inhibitors to human cells increases the abundance of SIRT2 protein, indicating that SIRT2 is targeted for degradation by the 26S proteasome. Our data suggest that human SIRT2 is part of a phosphorylation cascade in which SIRT2 is phosphorylated late in G2, during M, and into the period of cytokinesis. CDC14B may provoke exit from mitosis coincident with the loss of SIRT2 via ubiquitination and subsequent degradation by the 26S proteasome.


Sign in / Sign up

Export Citation Format

Share Document