scholarly journals Antioxidant supplementation overcomes the deleterious effects of maternal restraint stress-induced oxidative stress on mouse oocytes

Reproduction ◽  
2013 ◽  
Vol 146 (6) ◽  
pp. 559-568 ◽  
Author(s):  
Hua-Yu Lian ◽  
Yan Gao ◽  
Guang-Zhong Jiao ◽  
Ming-Ju Sun ◽  
Xiu-Fen Wu ◽  
...  

In this study, using a mouse model, we tested the hypothesis that restraint stress would impair the developmental potential of oocytes by causing oxidative stress and that antioxidant supplementation could overcome the adverse effect of stress-induced oxidative stress. Female mice were subjected to restraint stress for 24 h starting 24 h after equine chorionic gonadotropin injection. At the end of stress exposure, mice were either killed to recover oocytes forin vitromaturation (IVM) or injected with human chorionic gonadotropin and caged with male mice to observein vivodevelopment. The effect of antioxidants was testedin vitroby adding them to IVM medium orin vivoby maternal injection immediately before restraint stress exposure. Assays carried out to determine total oxidant and antioxidant status, oxidative stress index, and reactive oxygen species (ROS) and glutathione levels indicated that restraint stress increased oxidative stress in mouse serum, ovaries, and oocytes. Whereas the percentage of blastocysts and number of cells per blastocyst decreased significantly in oocytes from restraint-stressed mice, addition of antioxidants to IVM medium significantly improved their blastocyst development. Supplementation of cystine and cysteamine to IVM medium reduced ROS levels and aneuploidy while increasing glutathione synthesis and improving pre- and postimplantation development of oocytes from restraint-stressed mice. Furthermore, injection of the antioxidant epigallocatechin gallate into restraint-stressed mice significantly improved the blastocyst formation and postimplantation development of their oocytes. In conclusion, restraint stress at the oocyte prematuration stage impaired the developmental potential of oocytes by increasing oxidative stress and addition of antioxidants to IVM medium or maternal antioxidant injection overcame the detrimental effect of stress-induced oxidative stress. The data reported herein are helpful when making attempts to increase the chances of a successful outcome in human IVF, because restraint was applied at a stage similar to the FSH stimulation period in a human IVF program.

2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Olga O. Gonchar ◽  
Andriy V. Maznychenko ◽  
Nataliya V. Bulgakova ◽  
Inna V. Vereshchaka ◽  
Tomasz Tomiak ◽  
...  

The effects of C60FAS (50 and 500 μg/kg) supplementation, in a normal physiological state and after restraint stress exposure, on prooxidant/antioxidant balance in rat tissues were explored and compared with the effects of the known exogenous antioxidant N-acetylcysteine. Oxidative stress biomarkers (ROS, O2⋅−, H2O2, and lipid peroxidation) and indices of antioxidant status (MnSOD, catalase, GPx, GST, γ-GCL, GR activities, and GSH level) were measured in the brain and the heart. In addition, protein expression of Nrf2 in the nuclear and cytosol fractions as well as the protein level of antiradical enzyme MnSOD and GSH-related enzymes γ-GCLC, GPx, and GSTP as downstream targets of Nrf2 was evaluated by western blot analysis. Under a stress condition, C60FAS attenuates ROS generation and O2⋅− and H2O2 releases and thus decreases lipid peroxidation as well as increases rat tissue antioxidant capacity. We have shown that C60FAS supplementation has dose-dependent and tissue-specific effects. C60FAS strengthened the antiradical defense through the upregulation of MnSOD in brain cells and maintained MnSOD protein content at the control level in the myocardium. Moreover, C60FAS enhanced the GSH level and the activity/protein expression of GSH-related enzymes. Correlation of these changes with Nrf2 protein content suggests that under stress exposure, along with other mechanisms, the Nrf2/ARE-antioxidant pathway may be involved in regulation of glutathione homeostasis. In our study, in an in vivo model, when C60FAS (50 and 500 μg/kg) was applied alone, no significant changes in Nrf2 protein expression as well as in activity/protein levels of MnSOD and GSH-related enzymes in both tissues types were observed. All these facts allow us to assume that in the in vivo model, C60FAS affects on the brain and heart endogenous antioxidative statuses only during the oxidative stress condition.


Reproduction ◽  
2020 ◽  
Vol 160 (1) ◽  
pp. 129-140 ◽  
Author(s):  
Hong-Jie Yuan ◽  
Zhi-Bin Li ◽  
Xin-Yue Zhao ◽  
Guang-Yi Sun ◽  
Guo-Liang Wang ◽  
...  

Mechanisms by which female stress and particularly glucocorticoids impair oocyte competence are largely unclear. Although one study demonstrated that glucocorticoids triggered apoptosis in ovarian cells and oocytes by activating the FasL/Fas system, other studies suggested that they might induce apoptosis through activating other signaling pathways as well. In this study, both in vivo and in vitro experiments were conducted to test the hypothesis that glucocorticoids might trigger apoptosis in oocytes and ovarian cells through activating the TNF-α system. The results showed that cortisol injection of female mice (1.) impaired oocyte developmental potential and mitochondrial membrane potential with increased oxidative stress; (2.) induced apoptosis in mural granulosa cells (MGCs) with increased oxidative stress in the ovary; and (3.) activated the TNF-α system in both ovaries and oocytes. Culture with corticosterone induced apoptosis and activated the TNF-α system in MGCs. Knockdown or knockout of TNF-α significantly ameliorated the pro-apoptotic effects of glucocorticoids on oocytes and MGCs. However, culture with corticosterone downregulated TNF-α expression significantly in oviductal epithelial cells. Together, the results demonstrated that glucocorticoids impaired oocyte competence and triggered apoptosis in ovarian cells through activating the TNF-α system and that the effect of glucocorticoids on TNF-α expression might vary between cell types.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Chencheng Feng ◽  
Minghui Yang ◽  
Minghong Lan ◽  
Chang Liu ◽  
Yang Zhang ◽  
...  

Excessive reactive oxygen species (ROS) generation in degenerative intervertebral disc (IVD) indicates the contribution of oxidative stress to IVD degeneration (IDD), giving a novel insight into the pathogenesis of IDD. ROS are crucial intermediators in the signaling network of disc cells. They regulate the matrix metabolism, proinflammatory phenotype, apoptosis, autophagy, and senescence of disc cells. Oxidative stress not only reinforces matrix degradation and inflammation, but also promotes the decrease in the number of viable and functional cells in the microenvironment of IVDs. Moreover, ROS modify matrix proteins in IVDs to cause oxidative damage of disc extracellular matrix, impairing the mechanical function of IVDs. Consequently, the progression of IDD is accelerated. Therefore, a therapeutic strategy targeting oxidative stress would provide a novel perspective for IDD treatment. Various antioxidants have been proposed as effective drugs for IDD treatment. Antioxidant supplementation suppresses ROS production in disc cells to promote the matrix synthesis of disc cells and to prevent disc cells from death and senescence in vitro. However, there is not enough in vivo evidence to support the efficiency of antioxidant supplementation to retard the process of IDD. Further investigations based on in vivo and clinical studies will be required to develop effective antioxidative therapies for IDD.


2017 ◽  
Vol 474 (5) ◽  
pp. 731-749 ◽  
Author(s):  
Ruchika Gangwar ◽  
Avtar S. Meena ◽  
Pradeep K. Shukla ◽  
Archana S. Nagaraja ◽  
Piotr L. Dorniak ◽  
...  

The role of reactive oxygen species (ROS) in osmotic stress, dextran sulfate sodium (DSS) and cyclic stretch-induced tight junction (TJ) disruption was investigated in Caco-2 cell monolayers in vitro and restraint stress-induced barrier dysfunction in mouse colon in vivo. Live cell imaging showed that osmotic stress, cyclic stretch and DSS triggered rapid production of ROS in Caco-2 cell monolayers, which was blocked by depletion of intracellular Ca2+ by 1,2-bis-(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid. Knockdown of CaV1.3 or TRPV6 channels blocked osmotic stress and DSS-induced ROS production and attenuated TJ disruption and barrier dysfunction. N-Acetyl l-cysteine (NAC) and l-NG-Nitroarginine methyl ester (l-NAME) blocked stress-induced TJ disruption and barrier dysfunction. NAC and l-NAME also blocked stress-induced activation of c-Jun N-terminal kinase (JNK) and c-Src. ROS was colocalized with the mitochondrial marker in stressed cells. Cyclosporin A blocked osmotic stress and DSS-induced ROS production, barrier dysfunction, TJ disruption and JNK activation. Mitochondria-targeted Mito-TEMPO blocked osmotic stress and DSS-induced barrier dysfunction and TJ disruption. Chronic restraint stress in mice resulted in the elevation of intracellular Ca2+, activation of JNK and c-Src, and disruption of TJ in the colonic epithelium. Furthermore, corticosterone administration induced JNK and c-Src activation, TJ disruption and protein thiol oxidation in colonic mucosa. The present study demonstrates that oxidative stress is a common signal in the mechanism of TJ disruption in the intestinal epithelium by different types of cellular stress in vitro and bio behavioral stress in vivo.


2020 ◽  
Vol 26 (22) ◽  
pp. 2610-2619 ◽  
Author(s):  
Tarique Hussain ◽  
Ghulam Murtaza ◽  
Huansheng Yang ◽  
Muhammad S. Kalhoro ◽  
Dildar H. Kalhoro

Background: Inflammation is a complex response of the host defense system to different internal and external stimuli. It is believed that persistent inflammation may lead to chronic inflammatory diseases such as, inflammatory bowel disease, neurological and cardiovascular diseases. Oxidative stress is the main factor responsible for the augmentation of inflammation via various molecular pathways. Therefore, alleviating oxidative stress is effective a therapeutic option against chronic inflammatory diseases. Methods: This review article extends the knowledge of the regulatory mechanisms of flavonoids targeting inflammatory pathways in chronic diseases, which would be the best approach for the development of suitable therapeutic agents against chronic diseases. Results: Since the inflammatory response is initiated by numerous signaling molecules like NF-κB, MAPK, and Arachidonic acid pathways, their encountering function can be evaluated with the activation of Nrf2 pathway, a promising approach to inhibit/prevent chronic inflammatory diseases by flavonoids. Over the last few decades, flavonoids drew much attention as a potent alternative therapeutic agent. Recent clinical evidence has shown significant impacts of flavonoids on chronic diseases in different in-vivo and in-vitro models. Conclusion: Flavonoid compounds can interact with chronic inflammatory diseases at the cellular level and modulate the response of protein pathways. A promising approach is needed to overlook suitable alternative compounds providing more therapeutic efficacy and exerting fewer side effects than commercially available antiinflammatory drugs.


2019 ◽  
Vol 24 (39) ◽  
pp. 4626-4638 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed M. Hassanian ◽  
Farzad Rahmani ◽  
Seyed H. Aghaee-Bakhtiari ◽  
Amir Avan ◽  
...  

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been explored. Methods: The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase (SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue. Results: Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect. Conclusion: Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be used as a complementary treatment in clinical settings.


2018 ◽  
Vol 15 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Barbara D'Orio ◽  
Anna Fracassi ◽  
Maria Paola Cerù ◽  
Sandra Moreno

Background: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called “amyloid cascade hypothesis” has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, β/δ, γ), PPARγ role is the most extensively studied, while information on α and β/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. Conclusion: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


2019 ◽  
Vol 16 (6) ◽  
pp. 696-710
Author(s):  
Mahmoud Balbaa ◽  
Doaa Awad ◽  
Ahmad Abd Elaal ◽  
Shimaa Mahsoub ◽  
Mayssaa Moharram ◽  
...  

Background: ,2,3-Triazoles and imidazoles are important five-membered heterocyclic scaffolds due to their extensive biological activities. These products have been an area of growing interest to many researchers around the world because of their enormous pharmaceutical scope. Methods: The in vivo and in vitro enzyme inhibition of some thioglycosides encompassing 1,2,4- triazole N1, N2, and N3 and/or imidazole moieties N4, N5, and N6. The effect on the antioxidant enzymes (superoxide dismutase, glutathione S-transferase, glutathione peroxidase and catalase) was investigated as well as their effect on α-glucosidase and β-glucuronidase. Molecular docking studies were carried out to investigate the mode of the binding interaction of the compounds with α- glucosidase and β -glucuronidase. In addition, quantitative structure-activity relationship (QSAR) investigation was applied to find out the correlation between toxicity and physicochemical properties. Results: The decrease of the antioxidant status was revealed by the in vivo effect of the tested compounds. Furthermore, the in vivo and in vitro inhibitory effects of the tested compounds were clearly pronounced on α-glucosidase, but not β-glucuronidase. The IC50 and Ki values revealed that the thioglycoside - based 1,2,4-triazole N3 possesses a high inhibitory action. In addition, the in vitro studies demonstrated that the whole tested 1,2,4-triazole are potent inhibitors with a Ki magnitude of 10-6 and exhibited a competitive type inhibition. On the other hand, the thioglycosides - based imidazole ring showed an antioxidant activity and exerted a slight in vivo stimulation of α-glucosidase and β- glucuronidase. Molecular docking proved that the compounds exhibited binding affinity with the active sites of α -glucosidase and β-glucuronidase (docking score ranged from -2.320 to -4.370 kcal/mol). Furthermore, QSAR study revealed that the HBD and RB were found to have an overall significant correlation with the toxicity. Conclusion: These data suggest that the inhibition of α-glucosidase is accompanied by an oxidative stress action.


2021 ◽  
Vol 22 (4) ◽  
pp. 1514 ◽  
Author(s):  
Akihiro Yachie

Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document