Fabrication of an all-polysaccharide composite film from hemicellulose and methylcellulose

BioResources ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. 6716-6726
Author(s):  
Gui-Chun Hu ◽  
Shiyu Fu ◽  
Fuqiang Chu ◽  
Guangyuan Wu

There is significant interest in preparing packaging film from sustainable polysaccharides, especially hemicellulose (HC). Hemicellulose isolated from wheat straw tends to aggregate into dissolved particles in aqueous solutions and to form poor films. When methylcellulose (MC) was added into the HC solution, HC and MC formed a HC-MC complex. With increased MC content, the size of the HC-MC complex decreased, and its surface charge increased at the same time. When 35 wt% MC was added into the HC, a continuous HC-MC film formed in the layer structure. The HC-MC film with 75 wt% MC showed a more compact layer structure compared with other films. The tensile strengths of the HC-MC film increased with the MC addition. When MC was added to 75 wt%, the tensile strengths of the HC-MC film reached their maximum values, which were higher than that of MC film. This high film strength suggested these HC-MC composite films have potential applications in packaging material.

2017 ◽  
Vol 30 (10) ◽  
pp. 1240-1246 ◽  
Author(s):  
Xinyu Ma ◽  
Lizhu Liu ◽  
Hongju He ◽  
Ling Weng

Polyimides (PIs) are widely used in many fields including aerospace and microelectronics. Due to their poor corona resistance, their practical applications were limited, especially in the field of variable frequency motors. In this study, we have achieved for the first time to increase the corona resistance by controlling the preparation process of the three-layered PI composite. A series of PI/nano-Al2O3 composite films with novel three-layer structure were prepared by in situ polymerization employing pyromellitic dianhydride and 4,4-diaminodiphenyl as raw material, N, N-dimethylacetamide as solvent, and doping of nano-Al2O3. The first layer of the PI/Al2O3 composite film was characterized by Fourier transform infrared spectroscopy, and the imidization rate under different processes was calculated. The interface structures and bonding conditions of the composite films were characterized by scanning electron microscope, and the surface morphologies of the composite films treated by different corona-resistance times were investigated. X-ray diffraction analysis was also used to study the effect of nano-Al2O3 on PIs with different imidization ratios. The corona-resistance time and breakdown field strength of the composite films prepared by different processes were also tested. The results indicated that the combination of the three-layer composite film and the corona-resistance abilities of the composite membrane surface was enhanced by increasing the imidization rate. Meanwhile, the corona-resistance time and the electrical breakdown strength of composite films were also improved by increasing the imidization rate.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3337
Author(s):  
Xi Huang ◽  
Xin Zhou ◽  
Qingyin Dai ◽  
Zhiyong Qin

The objective of this study was to prepare a functional biodegradable soy protein isolate (SPI) food packaging film by introducing a natural antimicrobial agent, mangosteen peel extract (MPE, 10 wt% based on SPI), and different concentrations of functional modifiers, ZnO NPs, into the natural polymer SPI by solution casting method. The physical, antioxidant, antibacterial properties and chemical structures were also investigated. The composite film with 5% ZnO NPs had the maximum tensile strength of 8.84 MPa and the lowest water vapor transmission rate of 9.23 g mm/m2 h Pa. The composite film also exhibited excellent UV-blocking, antioxidant, and antibacterial properties against Escherichia coli and Staphylococcus aureus. The TGA results showed that the introduction of MPE and ZnO NPs improved the thermal stability of SPI films. The microstructure of the films was analyzed by SEM to determine the smooth surface of the composite films. ATR-FTIR and XPS analyses demonstrated the strong hydrogen bonding of SPI, MPE, and ZnO NPs in the films. The presence of ZnO NPs in the composite films was also proved by EDX and XRD. These results suggest that SPI/MPE/ZnO composite film is promising for food-active packaging to extend the shelf life of food products.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2932 ◽  
Author(s):  
Dabin Park ◽  
Minsu Kim ◽  
Jooheon Kim

Flexible Ag2Se NW/PEDOT:PSS thermoelectric composite films with different Ag2Se contents (10, 20, 30, 50, 70, and 80 wt.%) are fabricated. The Ag2Se nanowires are first fabricated with solution mixing. After that, Ag2Se NW/PEDOT:PSS composite film was fabricated using a simple drop-casting method. To evaluate the potential applications of the Ag2Se NW/PEDOT:PSS composite, their thermoelectric properties are analyzed according to their Ag2Se contents, and strategies for maximizing the thermoelectric power factor are discussed. The maximum room-temperature power factor of composite film (178.59 μW/m·K2) is obtained with 80 wt.% Ag2Se nanowires. In addition, the composite film shows outstanding durability after 1000 repeat bending cycles. This work provides an important strategy for the fabrication of high-performance flexible thermoelectric composite films, which can be extended to other inorganic/organic composites and will certainly promote their development and thermoelectric applications.


2012 ◽  
Vol 565 ◽  
pp. 615-620
Author(s):  
Bin Shen ◽  
Liang Wang ◽  
Su Lin Chen ◽  
Fang Hong Sun

The CVD diamond/diamond-like carbon composite film is fabricated on the WC-Co substrate by depositing a layer of Diamond-like Carbon film on the surface of conventional Micro- or Nano-crystalline diamond film. The hot filament chemical vapor deposition (HFCVD) method and vacuum arc discharge with a graphite cathode are adopted respectively to deposit the MCD/NCD and DLC films. A variety of characterization techniques, including filed emission scanning electron microscope (FE-SEM) and Raman spectroscopy are employed to investigate the surface morphology and atomic bonding state of as-deposited MCD/DLC and NCD/DLC composite film. The results show that both MCD/DLC and NCD/DLC composite films present similar surface morphology with the MCD and NCD films, except for scattering a considerable amount of small-sized diamond crystallites among the grain boundary area. The atomic-bonding state of as-deposited MCD/DLC and NCD/DLC composite films is determined by the top-layered DLC film, which is mainly consisted of amorphous carbon phase and no discernible sp3 characteristic peak can be observed from their Raman spectrum. Furthermore, the tribological properties of as-deposited MCD/DLC and NCD/DLC composite films is examined using a ball-on-plate reciprocating friction tester under both dry sliding and water-lubricating conditions, comparing with conventional DLC, MCD and NCD films. Silicon nitride balls are used as counterpart materials. For the CVD diamond/DLC composite films, the self-lubricating effect of top-layered DLC film is beneficial for suppressing the initial friction peak, as well as shortening the run-in period. The average friction coefficients of MCD/DLC and NCD/DLC composite films during stable sliding period are 0.07 and 0.10 respectively in dry sliding; while under water-lubricating condition, they further decreases to 0.03 and 0.07.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1908
Author(s):  
Hai Li ◽  
Sooman Lim

Self-polarized piezoelectric devices have attracted significant interest owing to their fabrication processes with low energy consumption. Herein, novel poling-free piezoelectric nanogenerators (PENGs) based on self-polarized polyvinylidene difluoride (PVDF) induced by the incorporation of different surface-modified barium titanate nanoparticles (BTO NPs) were prepared via a fully printing process. To reveal the effect of intermolecular interactions between PVDF and NP surface groups, BTO NPs were modified with hydrophilic polydopamine (PDA) and hydrophobic 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTES) to yield PDA-BTO and PFD-BTO, respectively. This study demonstrates that the stronger hydrogen bonding interactions existed in PFD-BTO/PVDF composite film comparative to the PDA-BTO/PVDF composite film induced the higher β-phase formation (90%), which was evidenced by the XRD, FTIR and DSC results, as well as led to a better dispersion of NPs and improved mechanical properties of composite films. Consequently, PFD-BTO/PVDF-based PENGs without electric poling exhibited a significantly improved output voltage of 5.9 V and power density of 102 μW cm−3, which was 1.8 and 2.9 times higher than that of PDA-BTO/PVDF-based PENGs, respectively. This study provides a promising approach for advancing the search for high-performance, self-polarized PENGs in next-generation electric and electronic industries.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 154-161 ◽  
Author(s):  
Gao Yurong ◽  
Li Dapeng

AbstractCorn starch/polyvinyl alcohol (PVA)/glycerol composite films incorporated with ε-polylysine were prepared, and their properties were investigated. The Fourier-transform infrared (FTIR) spectroscopy indicated that the interactions happened between the amino group of ε-polylysine and hydroxyl group starch/PVA composite films. X-ray diffraction (XRD) analysis showed that the addition of ε-polylysine decreased the intensity of all crystal peaks. Thermogravimetric (TGA) analysis suggested that ε-polylysine improved the thermal stability of composite films. Scanning electron microscopic (SEM) analysis showed that the upper surface of composite films incorporated with ε-polylysine presented more compact and flat surface. The antimicrobial activity of the composite film progressively increased with the increasing of ε-polylysine concentration (P < 0.05). The tensile strength, elongation at break and water absorption significantly increased, whereas water solubility decreased with the increasing of ε-polylysine concentration (P < 0.05). Therefore, the corn starch/PVA/glycerol composite films incorporated with ε-polylysine had good mechanical, physical and antimicrobial properties and could have potential application as a novel antimicrobial packaging material.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2588
Author(s):  
Mansuri M. Tosif ◽  
Agnieszka Najda ◽  
Aarti Bains ◽  
Grażyna Zawiślak ◽  
Grzegorz Maj ◽  
...  

In recent years, scientists have focused on research to replace petroleum-based components plastics, in an eco-friendly and cost-effective manner, with plant-derived biopolymers offering suitable mechanical properties. Moreover, due to high environmental pollution, global warming, and the foreseen shortage of oil supplies, the quest for the formulation of biobased, non-toxic, biocompatible, and biodegradable polymer films is still emerging. Several biopolymers from varied natural resources such as starch, cellulose, gums, agar, milk, cereal, and legume proteins have been used as eco-friendly packaging materials for the substitute of non-biodegradable petroleum-based plastic-based packaging materials. Among all biopolymers, starch is an edible carbohydrate complex, composed of a linear polymer, amylose, and amylopectin. They have usually been considered as a favorite choice of material for food packaging applications due to their excellent forming ability, low cost, and environmental compatibility. Although the film prepared from bio-polymer materials improves the shelf life of commodities by protecting them against interior and exterior factors, suitable barrier properties are impossible to attain with single polymeric packaging material. Therefore, the properties of edible films can be modified based on the hydrophobic–hydrophilic qualities of biomolecules. Certain chemical modifications of starch have been performed; however, the chemical residues may impart toxicity in the food commodity. Therefore, in such cases, several plant-derived polymeric combinations could be used as an effective binary blend of the polymer to improve the mechanical and barrier properties of packaging film. Recently, scientists have shown their great interest in underutilized plant-derived mucilage to synthesize biodegradable packaging material with desirable properties. Mucilage has a great potential to produce a stable polymeric network that confines starch granules that delay the release of amylose, improving the mechanical property of films. Therefore, the proposed review article is emphasized on the utilization of a blend of source and plant-derived mucilage for the synthesis of biodegradable packaging film. Herein, the synthesis process, characterization, mechanical properties, functional properties, and application of starch and mucilage-based film are discussed in detail.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 285
Author(s):  
Lingfei Li ◽  
Qiu Sun ◽  
Xiangqun Chen ◽  
Zhaohua Jiang ◽  
Yongjun Xu

The low dielectric constant of the nonpolar polymer poly(1-butene) (PB-1) limits its application as a diaphragm element in energy storage capacitors. In this work, Ba(Zr0.2Ti0.8)O3-coated multiwalled carbon nanotubes (BZT@MWCNTs) were first prepared by using the sol–gel hydrothermal method and then modified with polydopamine (PDA) via noncovalent polymerization. Finally, PB-1 matrix composite films filled with PDA-modified BZT@MWCNTs nanoparticles were fabricated through a solution-casting method. Results indicated that the PDA-modified BZT@MWCNTs had good dispersion and binding force in the PB-1 matrix. These characteristics improved the dielectric and energy storage performances of the films. Specifically, the PDA-modified 10 vol% BZT@ 0.5 vol% MWCNTs/PB-1 composite film exhibited the best dielectric performance. At 1 kHz, the dielectric constant of this film was 25.43, which was 12.7 times that of pure PB-1 films. Moreover, its dielectric loss was 0.0077. Furthermore, under the weak electric field of 210 MV·m−1, the highest energy density of the PDA-modified 10 vol% BZT@ 0.5 vol% MWCNTs/PB-1 composite film was 4.57 J·cm−3, which was over 3.5 times that of PB-1 film (≈1.3 J·cm−3 at 388 MV·m−1).


2021 ◽  
pp. 095400832110003
Author(s):  
Ruiyi Li ◽  
Chengcheng Ding ◽  
Juan Yu ◽  
Xiaodong Wang ◽  
Pei Huang

In this article, the polyimide (PI) composite films with synergistically improving thermal conductivity were prepared by adding a few graphene nanoplatelets (GNP) and various hexagonal boron nitride (h-BN) contents into the PI matrix. The thermal conductivity of PI composite film with 1 wt% GNP and 30 wt% h-BN content was 1.21 W(m·k)− 1, which was higher than that of the PI composite film with 30 wt% h-BN content (0.45 W(m·k)− 1), the synergistic efficiency of GNP under various h-BN content (10 wt%, 20 wt%, and 30 wt%) were 1.70, 2.71, and 3.09, respectively. And it was found that the increased h-BN content can suppress the dielectric properties caused by GNP in the matrix. The dielectric permittivity and dielectric loss tangent of 1 wt% GNP/PI composite film were 10.69, 0.661 at 103 Hz, respectively, and that of the 30 wt% h-BN + GNP/PI composite film were 4.29 and 0.1367, respectively. Moreover, the mechanical properties of the PI composite film were suitable for practical applications. And the heat resistance index and the residual rate at 700°C of PI composite film increased to 326.8°C, 74.43%, respectively, and these of PI film were 292.6°C and 59.26%. Thus, it may provide a reference value for applying the filler hybridization/PI film in the electronic packaging materials.


Sign in / Sign up

Export Citation Format

Share Document