scholarly journals The in Vitro Antibiofilm Activity of Waterfall and Marine Bacteria Against Human Bacterial Pathogens

2020 ◽  
Vol 13 (2) ◽  
pp. 250-262
Author(s):  
Stella Magdalena ◽  
Natassa Rustandi ◽  
Yogiara Yogiara

AbstrakKeterlibatan biofilm pada infeksi kronis dan pada permukaan peralatan medis selalu menjadi wacana penting bagi kesehatan umum di dunia. Biofilm bakteri berkaitan dengan tingkat resistensi terhadap antibiotik yang menjadikan infeksi sulit untuk diobati. Untuk mengatasi masalah ini, pengendalian yang efektif perlu diimplementasikan, seperti penerapan senyawa antibiofilm. Beberapa tahun terakhir, lingkungan akuatik menjadi salah satu sumber potensi penghasil senyawa bioaktif, termasuk senyawa antibiofilm. Tujuan dari penelitian ini yaitu menapis dan mengkarakterisasi bakteri asal air terjun dan laut yang diperoleh dari beberapa lokasi di Indonesia, sebagai penghasil aktivitas antibiofilm. Isolat dievaluasi berdasarkan kemampuan aktivitas antimikroba terhadap enam bakteri patogen dan diikuti dengan penapisan senyawa antibiofilm. Sebanyak 11 dari 65 isolat menunjukkan aktivitas quorum sensing atau quorum quenching, dan hanya terdapat satu isolat yang memiliki aktivitas keduanya. Supernatan kesebelas isolat menunjukkan penghambatan pembentukan biofilm setidaknya terhadap satu patogen dengan metode uji biofilm statis. Karakterisasi senyawa bioaktif dari lima isolat yang terpilih menunjukkan aktivitas senyawa yang berbeda, seperti karbohidrat, protein, dan asam nukleat. Sekuensing gen penyandi 16S rRNA menetapkan kelima isolat tersebut berada dalam dua genus yang berbeda, Vibrio (WK2.4, WK2.6, and WK2.3) dan Pseudomonas (S1.2 dan S1.3). Penelitian ini memberikan wawasan baru terhadap pencarian kandidat bakteri akuatik sebagai agen antibiofilm yang potensial. Abstract Biofilm involvement in chronic infections and on the surface of medical equipments have been considered as public health concern worldwide. Bacterial biofilm is related to antibiotic resistance that made the diseases difficult to treat. An effective control strategy should be implemented, for example, by applying antibiofilm agents. Recently, concerns has been given to aquatic environment as potential sources of bioactive compounds, including the antibiofilm compounds. This study aimed to screen and characterize waterfall and marine bacteria obtained from several locations in Indonesia which have antibiofilm activity. The isolates were first evaluated for their antimicrobial activity against six bacterial pathogens and followed by antibiofilm screening. Eleven out of 65 isolates showed quorum sensing or quorum quenching activity, and one of them showed both activities. Supernatants of 11 isolates inhibited biofilm formation of at least one pathogen by using static biofilm assay. Bioactive compounds characterization of the selected five isolates revealed the presence of different compounds, such as carbohydrates, proteins, and nucleic acids. The 16S rRNA gene sequencing analysis classified five isolates into two different genera, Vibrio (WK2.4, WK2.6, and WK2.3) and Pseudomonas (S1.2 and S1.3). The present study provides insights into the discovery of aquatic bacteria candidates as antibiofilm agents.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Gloria Raissa ◽  
Diana Elizabeth Waturangi ◽  
Dinamella Wahjuningrum

Abstract Background Indonesia is the third largest producer of fish and other aquaculture products in the world, making this industry a major contributor in the economy of Indonesia. However, this industry continually overcome challenges, one of them are bacterial outbreaks. In addition, the emergence of these bacterial outbreaks were worsen due to the biofilm produced by many significant pathogenic bacteria and the impact of increased antibiotic resistance. These issues have become a global concern, because antibiotics are currently one of the main treatments available to overcome this problems. Therefore, studies aimed at finding and characterizing bioactive compounds to combat these issues. In this study actinomycetes isolates were screened and characterized for their bioactive compounds produced which have inhibitory and destructive activity and also QS inhibitors against biofilm structure of aquatic pathogenic bacteria, such as Vibrio harveyi, A. hydrophila, and S. agalactiae. Result Extracts (20 mg/mL) produced by sixteen Actinomycetes isolates showed anti-quorum sensing activity towards reporter stain Chromobacterium violaceum wild-type. Most of these extracts showed better inhibitory activity on all of the pathogenic bacteria biofilm structure tested than the destructive activity on the preformed of those biofilm structure. Subsequently, we also performed characterization of bioactive compound and found that in this study, polysaccharide is the most common antibiofilm agents, which were responsible to their antibiofilm activity. Finally, we found that the value of LC50 of all extracts tested were more than 1 mg/mL, thereby all of extracts tested did not show cyto-toxic effect against Artemia salina. Conclusion All of the extracts of Actinomycetes isolates showed promising inhibitory activity towards biofilm structure of pathogenic bacteria tested. So far, all of the extracts are potential to be QS inhibitors and antibiofilm agents of all pathogenic bacteria tested.


2018 ◽  
Vol 13 (2) ◽  
pp. 101 ◽  
Author(s):  
Taruna Dwi Satwika ◽  
Iman Rusmana ◽  
Alina Akhdiya

<p>Ekspresi gen-gen virulensi pada Dickeya dadantii diatur oleh proses quorum sensing menggunakan asil-homoserin lakton (AHL) sebagai molekul sinyal. Patogenisitas bakteri tersebut dapat dihambat oleh aktivitas quorum quenching (QQ) bakteribakteri penghasil AHL-laktonase. Tujuan penelitian ini adalah mengisolasi dan mengarakterisasi bakteri penghasil AHLlaktonase asal rizosfer dan filosfer yang berpotensi untuk dikembangkan sebagai quorum quencher untuk D. dadantii. Isolasi bakteri dilakukan dari sampel daun dan sampel tanah rizosfer beberapa komoditas tanaman asal Sukabumi, Tegal, Kupang, dan Wonosobo. Sebanyak 8 dari 79 isolat bakteri yang diperoleh menunjukkan aktivitas QQ terhadap bioindikator Chromobacterium violaceum. Bioasai respons hipersensitif (hypersensitive response) yang dilakukan pada tanaman tembakau<br />menunjukkan enam (KT2, KT9, KT10, KUT1, TKF2, and WKF3) dari delapan isolat tersebut tidak menimbulkan respons hipersensitif. Keenam isolat tersebut mampu menekan virulensi D. dadantii pada umbi kentang. Sekuen 16S rRNA enam isolat tersebut memiliki kemiripan tertinggi dengan Bacillus cereus, B. aryabhattai, B. acidiceler, dan Micrococcus aloeverae. B. cereus KT9 and B. aryabhattai TKF2 terdeteksi memiliki gen penyandi AHL-laktonase (aiiA). Ini merupakan laporan yang pertama tentang aktivitas QQ pada spesies M. aloeverae, B. aryabhattai, and B. acidiceler. Keberadaan gen aiiA pada B.<br />aryabhattai juga belum pernah dilaporkan sebelumnya. Penelitian ini memberikan informasi baru tentang aktivitas QQ ketiga isolat tersebut dan potensinya sebagai quorum quencher untuk D. dadantii.</p>


2021 ◽  
pp. e919
Author(s):  
Valencia Vanessa ◽  
Diana Elizabeth Waturangi

Food spoilage and microbial contamination require  attention during the food production process since the presence of these bacteria can create problems including the formation of biofilms produced by these  bacteria. Biofilm formations are initiated through cell-to-cell communication which is called quorum sensing mechanism. Hence, inhibition of this communication  mechanism could be one of the solutions to inhibit  biofilm formation. Therefore, exploration of bioactive compounds from various sources including  hyllosphere bacteria with anti-quorum sensing inhibition activities is important. Phyllosphere bacteria are a community of bacteria found on the surface of plant leaves at a very  large population. These bacteria can produce bioactive compounds that can inhibit quorum sensing mechanism. In this study, 54 phyllosphere bacteria  isolates were tested, 8 bacterial isolates had potential effect to inhibit quorum sensing. From biofilm inhibition assay, the highest percentages were showed by  ifferent phyllosphere isolates against each pathogen. Whereas, for biofilm destruction assay, JB 8F isolate had the highest percentage of destruction biofilm activity  against biofilm formed by Bacillus cereus and  Shewanella putrefaciens. Eight isolates of phyllosphere  bacteria had the potential as quorum quencher and  anti-biofilm agents, both for inhibition and destruction of biofilm.  


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1190
Author(s):  
Fohad Mabood Husain ◽  
Imran Hasan ◽  
Faizan Abul Qais ◽  
Rais Ahmad Khan ◽  
Pravej Alam ◽  
...  

The unabated abuse of antibiotics has created a selection pressure that has resulted in the development of antimicrobial resistance (AMR) among pathogenic bacteria. AMR has become a global health concern in recent times and is responsible for a high number of mortalities occurring across the globe. Owing to the slow development of antibiotics, new chemotherapeutic antimicrobials with a novel mode of action is required urgently. Therefore, in the current investigation, we green synthesized a nanocomposite comprising zinc oxide nanoparticles functionalized with extracellular polysaccharide xanthan gum (ZnO@XG). Synthesized nanomaterial was characterized by structurally and morphologically using UV-visible spectroscopy, XRD, FTIR, BET, SEM and TEM. Subinhibitory concentrations of ZnO@XG were used to determine quorum sensing inhibitory activity against Gram-negative pathogens, Chromobacterium violaceum, and Serratia marcescens. ZnO@XG reduced quorum sensing (QS) regulated virulence factors such as violacein (61%), chitinase (70%) in C. violaceum and prodigiosin (71%) and protease (72%) in S. marcescens at 128 µg/mL concentration. Significant (p ≤ 0.05) inhibition of biofilm formation as well as preformed mature biofilms was also recorded along with the impaired production of EPS, swarming motility and cell surface hydrophobicity in both the test pathogens. The findings of this study clearly highlight the potency of ZnO@XG against the QS controlled virulence factors of drug-resistant pathogens that may be developed as effective inhibitors of QS and biofilms to mitigate the threat of multidrug resistance (MDR). ZnO@XG may be used alone or in combination with antimicrobial drugs against MDR bacterial pathogens. Further, it can be utilized in the food industry to counter the menace of contamination and spoilage caused by the formation of biofilms.


Medicina ◽  
2021 ◽  
Vol 57 (8) ◽  
pp. 839
Author(s):  
Antony V Samrot ◽  
Amira Abubakar Mohamed ◽  
Etel Faradjeva ◽  
Lee Si Jie ◽  
Chin Hooi Sze ◽  
...  

Biofilms comprising aggregates of microorganisms or multicellular communities have been a major issue as they cause resistance against antimicrobial agents and biofouling. To date, numerous biofilm-forming microorganisms have been identified, which have been shown to result in major effects including biofouling and biofilm-related infections. Quorum sensing (which describes the cell communication within biofilms) plays a vital role in the regulation of biofilm formation and its virulence. As such, elucidating the various mechanisms responsible for biofilm resistance (including quorum sensing) will assist in developing strategies to inhibit and control the formation of biofilms in nature. Employing biological control measures (such as the use of bioactive compounds) in targeting biofilms is of great interest since they naturally possess antimicrobial activity among other favorable attributes and can also possibly act as potent antibiofilm agents. As an effort to re-establish the current notion and understanding of biofilms, the present review discuss the stages involved in biofilm formation, the factors contributing to its development, the effects of biofilms in various industries, and the use of various bioactive compounds and their strategies in biofilm inhibition.


Marine Drugs ◽  
2019 ◽  
Vol 17 (5) ◽  
pp. 275 ◽  
Author(s):  
Jing Zhao ◽  
Xinyun Li ◽  
Xiyan Hou ◽  
Chunshan Quan ◽  
Ming Chen

Quorum sensing (QS) is a phenomenon of intercellular communication discovered mainly in bacteria. A QS system consisting of QS signal molecules and regulatory protein components could control physiological behaviors and virulence gene expression of bacterial pathogens. Therefore, QS inhibition could be a novel strategy to combat pathogens and related diseases. QS inhibitors (QSIs), mainly categorized into small chemical molecules and quorum quenching enzymes, could be extracted from diverse sources in marine environment and terrestrial environment. With the focus on the exploitation of marine resources in recent years, more and more QSIs from the marine environment have been investigated. In this article, we present a comprehensive review of QSIs from marine bacteria. Firstly, screening work of marine bacteria with potential QSIs was concluded and these marine bacteria were classified. Afterwards, two categories of marine bacteria-derived QSIs were summarized from the aspects of sources, structures, QS inhibition mechanisms, environmental tolerance, effects/applications, etc. Next, structural modification of natural small molecule QSIs for future drug development was discussed. Finally, potential applications of QSIs from marine bacteria in human healthcare, aquaculture, crop cultivation, etc. were elucidated, indicating promising and extensive application perspectives of QS disruption as a novel antimicrobial strategy.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Olivia Nathalia ◽  
Diana Elizabeth Waturangi

Abstract Objective The objective of this research were to screen quorum quenching activity compound from phyllosphere bacteria as well as antibiofilm activity against several fish pathogen bacteria such as Aeromonas hydrophila, Streptococcus agalactiae, and Vibrio harveyi. Results We found eight phyllosphere bacteria isolates with potential quorum quenching activity to inhibit Chromobacterium violaceum as indicator bacteria. Crude extracts (20 mg/mL) showed various antibiofilm activity against fish pathogenic bacteria used in this study. Isolate JB 17B showed the highest activity to inhibit biofilm formation of A. hydrophila and V. harveyi, meanwhile isolate JB 3B showed the highest activity to inhibit biofilm of S. agalactiae. From destruction assay, isolate JB 8F showed the highest activity to disrupt biofilm of A. hydrophila isolate JB 20B showed the highest activity to disrupt biofilm of V. harveyi, isolate JB 17B also showed the highest activity to disrupt biofilm of S. agalactiae.


Biofouling ◽  
2021 ◽  
pp. 1-17
Author(s):  
Fallon dos Santos Siqueira ◽  
Camilla Filippi dos Santos Alves ◽  
Alencar Kolinski Machado ◽  
Josiéli Demétrio Siqueira ◽  
Thiago dos Santos ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 625
Author(s):  
Fatma Y. Ahmed ◽  
Usama Farghaly Aly ◽  
Rehab Mahmoud Abd El-Baky ◽  
Nancy G. F. M. Waly

Most of the infections caused by multi-drug resistant (MDR) P. aeruginosa strains are extremely difficult to be treated with conventional antibiotics. Biofilm formation and efflux pumps are recognized as the major antibiotic resistance mechanisms in MDR P. aeruginosa. Biofilm formation by P. aeruginosa depends mainly on the cell-to-cell communication quorum-sensing (QS) systems. Titanium dioxide nanoparticles (TDN) have been used as antimicrobial agents against several microorganisms but have not been reported as an anti-QS agent. This study aims to evaluate the impact of titanium dioxide nanoparticles (TDN) on QS and efflux pump genes expression in MDR P. aeruginosa isolates. The antimicrobial susceptibility of 25 P. aeruginosa isolates were performed by Kirby–Bauer disc diffusion. Titanium dioxide nanoparticles (TDN) were prepared by the sol gel method and characterized by different techniques (DLS, HR-TEM, XRD, and FTIR). The expression of efflux pumps in the MDR isolates was detected by the determination of MICs of different antibiotics in the presence and absence of carbonyl cyanide m-chlorophenylhydrazone (CCCP). Biofilm formation and the antibiofilm activity of TDN were determined using the tissue culture plate method. The effects of TDN on the expression of QS genes and efflux pump genes were tested using real-time polymerase chain reaction (RT-PCR). The average size of the TDNs was 64.77 nm. It was found that TDN showed a significant reduction in biofilm formation (96%) and represented superior antibacterial activity against P. aeruginosa strains in comparison to titanium dioxide powder. In addition, the use of TDN alone or in combination with antibiotics resulted in significant downregulation of the efflux pump genes (MexY, MexB, MexA) and QS-regulated genes (lasR, lasI, rhll, rhlR, pqsA, pqsR) in comparison to the untreated isolate. TDN can increase the therapeutic efficacy of traditional antibiotics by affecting efflux pump expression and quorum-sensing genes controlling biofilm production.


2021 ◽  
Author(s):  
Alex Yashkin ◽  
Josep Rayo ◽  
Larson Grimm ◽  
Martin Welch ◽  
Michael M. Meijler

Short-chain reactive probes can be used as tools to shed new light on virulence mechanisms in bacterial pathogens.


Sign in / Sign up

Export Citation Format

Share Document