scholarly journals Harmful Impacts of Heavy Metals and Utility of Biosorption Technique for Their Removal from Wastewater: A Review

Author(s):  
Ankita Negi ◽  
Rajesh Kumar ◽  
Sushil Kumar Joshi ◽  
Arpita Negi ◽  
Bhuvnesh Kumar ◽  
...  

The increasing number of efluents discharged from the source of water (urban, industrial, agricultural etc.), is resulting in a higher concentration of heavy metals in the source. Heavy metals have a density of over 5g/cm3 to the metals. These are toxic, mutagenic, carcinogenic and resistant in watery and non-aquatic environments and impact water and non-water bodies seriously by substituting the basic metals of the same function. The extraction from the wastewater can be done in numerous techniques for example using an ion replacement, membrane filtration, osmosis, etc. This study discusses the adverse effects of heavy metals on the human body, the benefits of biosorption over traditional approaches for removal of heavy metals, the different biosorbents used to extract heavy metals and concerning issues regarding its commercial use, offering a wider viewpoint for the diversity of biosorbents and utilization of biosorption technique. It is evident from the profound literature survey that pH, biosorbent particle size, contact time, initial metal ion concentration, presence of chelating ligands etc. are some factors that affect the rate and extent of biosorption. 

2021 ◽  
Vol 5 (1) ◽  
pp. 18-25
Author(s):  
Ali Mohammed Salih ◽  
Craig Williams ◽  
Polla Khanaqa

The present work involves the study of the removal of Cu2+, Fe3+, Pb2+ and Zn2+ from synthetic metal solutions using natural zeolite. Laboratory experiments were used to investigate the efficiency of adsorbents in the uptake of heavy metals from industrial wastewater. The kinetic study was used to identify the effect of parameters that affect the rate of adsorption and evaluated their impact on the efficiency of the zeolite in the removal of heavy metals from industrial wastewater. Natural zeolite (clinoptilolite) as adsorbent contacted with multi-component synthetic solutions containing Cu2+, Fe3+, Pb2+ and Zn2+ ions without any pre-modifications and every hour 15 ml of the samples were filtered and taken for metal ion concentration analysis using the ICP-OES. The pH values were monitored and adjusted regularly. The results showed that the capacity of the adsorbents for the removal of heavy metals increased with a greater mass of absorbent, increased initial solution pH, increased agitation speed and higher solution concentration.


2019 ◽  
Vol 80 (8) ◽  
pp. 1549-1561
Author(s):  
R. Saravanan ◽  
R. Mahalakshmi ◽  
M. S. Karthikeyan ◽  
L. Ravikumar

Abstract Cellulose bearing pendant Schiff base with heterocyclic chelating groups (CMC-Bz) was synthesized, which were fully characterized using various instrumental techniques such as solid state carbon-13 nuclear magnetic resonance (13C-NMR), Fourier transform infrared (FTIR), scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDX) spectra. The adsorption of toxic metals onto cellulosic material was tested in a batch mode operation. The adsorption functional factors such as pH, adsorbent dose, metal ion concentration, equilibrium time and temperature were experimentally optimized for the maximum removal of Cu(II) and Pb(II) ions. Adsorption isotherms were evaluated with Langmuir, Freundlich, Temkin and Redlich–Peterson isotherms. Kinetic parameters and equilibrium adsorption capacities were investigated for pseudo-first-order, pseudo-second-order and intra-particle diffusion models. Thermodynamic parameters and reusability were also evaluated.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2309-2312 ◽  
Author(s):  
J. S. D'Avila ◽  
C. M. Matos ◽  
M. R. Cavalcanti

The processes used to remove heavy metals from inorganic wastewater have in general low efficiency. The use of activated peat obtained by using a process similar to a cation exchange reaction increases the removal efficiency up to five times when compared with peat “in natura”. The main objective of this work is to show the fundamental mathematical model, governed by diffusion process and the algorithms utilized to design the batch and the continuous feed stirred tank reactors or in some cases a fixed bed reactor. The principal dimensions of these equipments are obtained from the knowledge of the activated peat's cation exchange capacity used in the process, and the main chemical characteristics of the heavy metal ion contained in the wastewater. Besides, two important parameters are also included: the ion concentration and the efficiency of the process obtained from laboratory kinetics experiments. For example Pb+2 is removed l:rom a wastewater at a concentration of 50g/m3 in five minutes or less, with an efficiency of 98%.


2013 ◽  
Vol 631-632 ◽  
pp. 291-297
Author(s):  
Yan Ming Wang ◽  
Da Ji Shang ◽  
Zhong Wei Niu

Laponite cross-linked poly(vinyl pyrrolidone) (PVP) hydrogels were fabricated by in situ polymerization of vinyl pyrrolidone (NVP). Macroporous PVP/Laponite nanocomposite hydrogels were obtained by freeze drying of hydrogels, which exhibited faster adsorption kinetics than ambient-dried ones. We also investigated the influence of laponite content, initial ion concentration and pH of the solution on the adsorption capacity of PVP/Laponite hydrogels. Moreover, the PVP/Lapnoite hydrogels can further be fabricated into powder hydrogel samples, which can be used as a potential candidate of adsorbent for removal of heavy metals in water.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 37
Author(s):  
Nurul Shuhada Mohd Makhtar ◽  
Juferi Idris ◽  
Mohibah Musa ◽  
Yoshito Andou ◽  
Ku Halim Ku Hamid ◽  
...  

High removal of heavy metals using plant-based bioflocculant under low concentration is required due to its low cost, abundant source, and nontoxicity for improved wastewater management and utilization in the water industry. This paper presents a treatment of synthetic wastewater using plant-based Tacca leontopetaloides biopolymer flocculant (TBPF) without modification on its structural polymer chains. It produced a high removal of heavy metals (Zn, Pb, Ni, and Cd) at a low concentration of TBPF dosage. In our previous report, TBPF was characterized and successfully reduced the turbidity, total suspended solids, and color for leachate treatment; however, its effectiveness for heavy metal removal has not been reported. The removal of these heavy metals was performed using a standard jar test procedure at different pH values of synthetic wastewater and TBPF dosages. The effects of hydroxide ion, pH, initial TBPF concentration, initial metal ion concentration, and TBPF dosage were examined using one factorial at the time (OFAT). The results show that the highest removal for Zn, Pb, Ni, and Cd metal ions were 98.4–98.5%, 79–80%, 97–98%, and 92–93%, respectively, using 120 mg/L dosage from the initial concentration of 10% TBPF at pH 10. The final concentrations for Zn, Pb, Ni, and Cd metal ions were 0.043–0.044, 0.41–0.43, 0.037–0.054, and 0.11–0.13 mg/L, respectively, which are below the Standard B discharge limit set by the Department of Environment (DOE), Malaysia. The results show that TBPF has a high potential for the removal of heavy metals, particularly Zn, Pb, Ni, and Cd, in real wastewater treatment.


2019 ◽  
Vol 155 ◽  
pp. 207-215 ◽  
Author(s):  
Stefan Demcak ◽  
Magdalena Balintova ◽  
Maria Demcakova ◽  
Kornel Csach ◽  
Inga Zinicovscaia ◽  
...  

2016 ◽  
Vol 74 (7) ◽  
pp. 1644-1657 ◽  
Author(s):  
Mona El-Sayed ◽  
Gh. Eshaq ◽  
A. E. ElMetwally

In our study, Mg–Al–Zn mingled oxides were prepared by the co-precipitation method. The structure, composition, morphology and thermal stability of the synthesized Mg–Al–Zn mingled oxides were analyzed by powder X-ray diffraction, Fourier transform infrared spectrometry, N2 physisorption, scanning electron microscopy, differential scanning calorimetry and thermogravimetry. Batch experiments were performed to study the adsorption behavior of cobalt(II) and nickel(II) as a function of pH, contact time, initial metal ion concentration, and adsorbent dose. The maximum adsorption capacity of Mg–Al–Zn mingled oxides for cobalt and nickel metal ions was 116.7 mg g−1, and 70.4 mg g−1, respectively. The experimental data were analyzed using pseudo-first- and pseudo-second-order kinetic models in linear and nonlinear regression analysis. The kinetic studies showed that the adsorption process could be described by the pseudo-second-order kinetic model. Experimental equilibrium data were well represented by Langmuir and Freundlich isotherm models. Also, the maximum monolayer capacity, qmax, obtained was 113.8 mg g−1, and 79.4 mg g−1 for Co(II), and Ni(II), respectively. Our results showed that Mg–Al–Zn mingled oxides can be used as an efficient adsorbent material for removal of heavy metals from industrial wastewater samples.


2018 ◽  
Vol 51 ◽  
pp. 03004
Author(s):  
Nima Moazezi ◽  
Mohammad Ali Moosavian

In this study, polyaniline modified with cobalt-hexacyanoferrate (PmCH) composite was synthesized and characterized for removal of Rb+, Cd2+, Zn2+, Pb2+, and Ni2+ by FTIR and XRD. The effect of pH, adsorbent dosage, ionic strength, contact time, initial ion concentration, and temperature were studied. The competition adsorption experiments between metal ions were investigated. Batch desorption was also conducted to evaluate the reusability of PmCH. The maximum adsorption capacities were 96.15, 27.17, 17.85, 19.15, and 4.76 mg g-1 of Rb+, Cd2+, Zn2+, Pb2+, and Ni2+, respectively. The optimum pH was determined at natural pH of each solution.


2020 ◽  
Vol 32 (4) ◽  
pp. 876-880
Author(s):  
Maninder Singh ◽  
D. P. Tiwari ◽  
Mamta Bhagat

The indiscriminate discharge of heavy metals into water and soil from anthropogenic practices is becoming prominent threat to the environment. Heavy metals like chromium, cadmium, lead, arsenic, nickel etc. are heavily toxic and carcinogenic in nature. This study emphasizes the adequacy of activated water chest nut (Trapa natans) peel powder as a new adsorbent material for removal of chromium(VI) metal ions. Adsorption experiments were performed in batch process. Various process parameters like contact time, temperature, solution pH, dose of adsorbent, metal ion concentration etc. were optimized. The physico-chemical properties of adsorbent material were characterized by FTIR and XRD. The morphology, topology of adsorbent surface was characterized by scanning electron microscopy (SEM) and Brunauer, Emmett and Teller (BET) which revealed a highly porous structure and available specific surface area. The adsorption capacity (maximum) was counted as 59.17 mg/g and specific surface area was found 23.467 m2/g at a pH 7. The adsorption process for Cr(VI) ions was in a good agreement with Langmuir isotherm. The process also followed pseudo second order kinetics. The obtained result shows that activated water chest nut (Trapa natans) peel powder (AWCPP) can be a hopeful low-cost and eco-friendly bio-adsorbent for removal of Cr(VI) metal ions and also better adsorbent than other various reported adsorbents.


2018 ◽  
Vol 68 (12) ◽  
pp. 2765-2767 ◽  
Author(s):  
Violeta Monica Radu ◽  
Petra Ionescu ◽  
Elena Diacu ◽  
Alexandru Anton Ivanov

The quality of the aquatic environment was strongly influenced by the development of urbanization, industrialization and population growth, and therefore water pollution, mainly due to the presence of heavy metal, becoming a widespread concern. The objective of this work was to evaluate the possibility to remove heavy metals Cd, Zn, Cr and Ni from wastewater using two aquatic plants, water hyacinth (Eichornia crassipes) and water lettuce (Pistia stratiottes). These plants possess excellent abilities to metabolize and bioaccumulate heavy metals from various polluted aquatic environments. For a period of 30 days, the content of heavy metals from wastewater and aquatic plants samples was monitored weakly and the efficacy of these plants to remove heavy metals was quantified. Heavy metals were determined by atomic absorption spectrophotometry with graphite furnace (GFAAS). The obtained results have shown the efficacy of Eichornia crassipes and Pistia stratiottes to remove metals from the studied wastewater. The bioaccumulation rate of heavy metals in plants was effective until day 24 of the period of 30 days of the experiment, as the plants become inefficient beyond this period. The uptake of heavy metals in the studied aquatic plants depends on the concentration of each heavy metal present in the used wastewater and the exposure time.


Sign in / Sign up

Export Citation Format

Share Document