scholarly journals Uso de la Estructura de tallas como evidencia del establecimiento poblacional del pez león Pterois volitans (Scorpaeniformes: Scorpaenidae) en el sur del Caribe Mexicano.

2016 ◽  
Vol 64 (1) ◽  
pp. 353 ◽  
Author(s):  
Miguel Mateo Sabido-Itzá ◽  
Alejandro Medina-Quej ◽  
Alberto De Jesús-Navarrete ◽  
Jorge Manuel Gómez-Poot ◽  
María Del Carmen García-Rivas

The lionfish (P. volitans) has now invaded all the Mexican Caribbean and Gulf of Mexico, with the potential to cause negative impacts on the reefs. In the South Mexican Caribbean was firstly reported in July 2009, and six years after this report, some control measures such as fish tournament and local marketing have been implemented. However, information on its biology and invasion is still-lacking, so this study analyzed the population structure of 2 164 organisms collected from 2009 to 2012. An increase was observed in sizes for each year averaging Total length (Tl): 118 ± 34.8, 133 ± 56.3, 187 ± 74.8 and 219 ± 72.4 mm, respectively. Lionfish establishment at the study site is shown for the presence of juveniles’ sizes 20 mm TL up to 375 mm TL. When the back-calculation was obtained, we estimated that the larger fish could have recruited in early 2006, three years before the first report was made. A continuous population monitoring and an ecological study, will allow us to clarify the real impact in the ecosystems of the region and so to propose the most effective control actions.

2020 ◽  
Vol 148 ◽  
Author(s):  
M.E. Arnold ◽  
B. Rajanayagam

Abstract The aim of this study was to apply a back-calculation model to Great Britain (GB) classical scrapie surveillance data, and use this model to estimate how many more cases might be expected, and over what time frame these cases might occur. A back-calculation model was applied to scrapie surveillance data between 2005 and 2019 to estimate the annual rate of decline of classical scrapie. This rate was then extrapolated to predict the number of future cases each year going forward. The model shows that there may be yet further cases of classical scrapie in GB. These will most likely occur in the fallen stock scheme, with approximately a 25% probability of at least 1 further scrapie positive, with a very low probability (~0.2%) of having up to three additional scrapie positives. This highlights the difficulty of completely eliminating all further cases, even in the presence of very effective control measures.


NeoBiota ◽  
2019 ◽  
Vol 51 ◽  
pp. 19-40 ◽  
Author(s):  
Marco A. Molina-Montenegro ◽  
Dana M. Bergstrom ◽  
Katarzyna J. Chwedorzewska ◽  
Peter Convey ◽  
Steven L. Chown

Biological invasions represent significant economic and conservation challenges, though it is widely acknowledged that their impacts are often poorly documented and difficult to predict. In the Antarctic, one non-native vascular plant species is widespread and studies have shown negative impacts on native flora. Using field “common garden” experiments, we evaluate the competitive impact of the increasingly widespread invasive grass Poa annua on the only two native vascular species of Antarctica, the forb Colobanthus quitensis and the grass Deschampsia antarctica. We focus on interactions between these three plant species under current and a future, wetter, climate scenario, in terms of density of individuals. Our analysis demonstrates Poa annua has the potential to have negative impacts on the survival and growth of the native Antarctic vascular species. Under predicted future wetter conditions, C. quitensis communities will become more resistant to invasion, while those dominated by D. antarctica will become less resistant. Under a recently developed unified scheme for non-native species impacts, P. annua can be considered a species that can cause potentially moderate to major impacts in Antarctica. If current patterns of increased human pressure and regional climate change persist and mitigation action is not taken (i.e. reduction of propagule pressure and eradication or control measures), P. annua is likely to spread in Antarctica, especially in the Antarctic Peninsula region, with significant negative consequences for some of the most remote and pristine ecosystems worldwide. Tighter biosecurity across all operators in the region, improved surveillance for the species, and prompt, effective control actions will reduce these risks.


2011 ◽  
Vol 19 (6) ◽  
pp. 1297-1305 ◽  
Author(s):  
Eliane da Costa Rodrigues ◽  
David Lopes Neto

This study aimed to evaluate the organization of malaria control actions in the Indigenous population of the municipality of São Gabriel da Cachoeira, Amazonas, AM, Brazil, from 2003 to 2007. This is an ecological study to evaluate the impact of control measures. Statistical analysis of the indicators revealed that the number of cases showed an increasing trend, with the highest numbers occurring in the rural areas. The same trend was observed for the Annual Parasite Index (API), however the highest APIs were found in the urban areas. The proportion of cases caused by Plasmodium falciparum showed a reduction. Hospitalization and mortality rates presented fluctuations and the fatality rate decreased. The findings indicate that control actions have proved partially effective and that they have provided a broader capacity to detect cases and to provide immediate treatment. Although the municipality still presents a high risk for transmission, the Pluriannual Plan in progress seems to have a good prognosis for the control of the disease, if maintained in a sustainable and permanent way.


2012 ◽  
Vol 78 (17) ◽  
pp. 6059-6067 ◽  
Author(s):  
Gabriele Margos ◽  
Jean I. Tsao ◽  
Santiago Castillo-Ramírez ◽  
Yvette A. Girard ◽  
Sarah A. Hamer ◽  
...  

ABSTRACTUnderstanding the spread of infectious diseases is crucial for implementing effective control measures. For this, it is important to obtain information on the contemporary population structure of a disease agent and to infer the evolutionary processes that may have shaped it. Here, we investigate on a continental scale the population structure ofBorrelia burgdorferi, the causative agent of Lyme borreliosis (LB), a tick-borne disease, in North America. We test the hypothesis that the observed population structure is congruent with recent population expansions and that these were preceded by bottlenecks mostly likely caused by the near extirpation in the 1900s of hosts required for sustaining tick populations. Multilocus sequence typing and complementary population analytical tools were used to evaluateB. burgdorferisamples collected in the Northeastern, Upper Midwestern, and Far-Western United States and Canada. The spatial distribution of sequence types (STs) and inferred population boundaries suggest that the current populations are geographically separated. One major population boundary separated westernB. burgdorferipopulations transmitted byIxodes pacificusin California from Eastern populations transmitted byI. scapularis; the other divided Midwestern and Northeastern populations. However, populations from all three regions were genetically closely related. Together, our findings suggest that although the contemporary populations of North AmericanB. burgdorferinow comprise three geographically separated subpopulations with no or limited gene flow among them, they arose from a common ancestral population. A comparative analysis of theB. burgdorferiouter surface protein C (ospC) gene revealed novel linkages and provides additional insights into the genetic characteristics of strains.


2020 ◽  
Author(s):  
Lukman Olagoke ◽  
Ahmet E. Topcu

BACKGROUND COVID-19 represents a serious threat to both national health and economic systems. To curb this pandemic, the World Health Organization (WHO) issued a series of COVID-19 public safety guidelines. Different countries around the world initiated different measures in line with the WHO guidelines to mitigate and investigate the spread of COVID-19 in their territories. OBJECTIVE The aim of this paper is to quantitatively evaluate the effectiveness of these control measures using a data-centric approach. METHODS We begin with a simple text analysis of coronavirus-related articles and show that reports on similar outbreaks in the past strongly proposed similar control measures. This reaffirms the fact that these control measures are in order. Subsequently, we propose a simple performance statistic that quantifies general performance and performance under the different measures that were initiated. A density based clustering of based on performance statistic was carried out to group countries based on performance. RESULTS The performance statistic helps evaluate quantitatively the impact of COVID-19 control measures. Countries tend show variability in performance under different control measures. The performance statistic has negative correlation with cases of death which is a useful characteristics for COVID-19 control measure performance analysis. A web-based time-line visualization that enables comparison of performances and cases across continents and subregions is presented. CONCLUSIONS The performance metric is relevant for the analysis of the impact of COVID-19 control measures. This can help caregivers and policymakers identify effective control measures and reduce cases of death due to COVID-19. The interactive web visualizer provides easily digested and quick feedback to augment decision-making processes in the COVID-19 response measures evaluation. CLINICALTRIAL Not Applicable


Author(s):  
Ting Wan Tan ◽  
Han Ling Tan ◽  
Man Na Chang ◽  
Wen Shu Lin ◽  
Chih Ming Chang

(1) Background: The implementation of effective control measures in a timely fashion is crucial to control the epidemic outbreak of COVID-19. In this study, we aimed to analyze the control measures implemented during the COVID-19 outbreak, as well as evaluating the responses and outcomes at different phases for epidemic control in Taiwan. (2) Methods: This case study reviewed responses to COVID-19 and the effectiveness of a range of control measures implemented for epidemic control in Taiwan and assessed all laboratory-confirmed cases between 11 January until 20 December 2020, inclusive of these dates. The confirmation of COVID-19 infection was defined as the positive result of a reverse-transcriptase–polymerase-chain-reaction test taken from a nasopharyngeal swab. Test results were reported by the Taiwan Centers for Disease Control. The incidence rate, mortality rate, and testing rate were compiled, and the risk ratio was provided to gain insights into the effectiveness of prevention measures. (3) Results and Discussion: This study presents retrospective data on the COVID-19 incidence rate in Taiwan, combined with the vital preventive control measures, in a timeline of the early stage of the epidemic that occurred in Taiwan. The implementation of multiple strategy control measures and the assistance of technologies to control the COVID-19 epidemic in Taiwan led to a relatively slower trend in the outbreak compared to the neighboring countries. In Taiwan, 766 confirmed patients were included, comprised of 88.1% imported cases and 7.2% local transmission cases, within the studied period. The incidence rate of COVID-19 in Taiwan during the studied period was 32 per million people, with a mortality rate of 0.3 per million people. Our analysis showed a significantly raised incidence risk ratio in the countries of interest in comparison to Taiwan during the study period; in the range of 1.9 to 947.5. The outbreak was brought under control through epidemic policies and hospital strategies implemented by the Taiwan Government. (4) Conclusion: Taiwan’s preventive strategies resulted in a drastically lower risk for Taiwan nationals of contracting COVID-19 when new pharmaceutical drug or vaccines were not yet available. The preventive strategies employed by Taiwan could serve as a guide and reference for future epidemic control strategies.


2020 ◽  
Vol 13 (1) ◽  
pp. 238
Author(s):  
Alice Giusti ◽  
Enrica Ricci ◽  
Laura Gasperetti ◽  
Marta Galgani ◽  
Luca Polidori ◽  
...  

Proper investment in mushroom production (farming and wild mushroom picking activities) may represent a winning strategy for many countries, including Italy, to better face the problems of food security and environmental impact, and to break away from imports, enhancing the local products. However, the risk related to the consumption of poisoning species requires governments to implement or reinforce effective control measures to protect consumers. Mushroom identification by phenotype observation is hardly applicable if morphologically-similar species, non-whole specimens, or clinical samples are involved. Genotypic analysis is a valid alternative. An ongoing research project involving the Experimental Zooprophylactic Institute of Lazio and Tuscany, the regional Mycological Inspectorate, the Tuscany Mycological Groups Association, and the Department of Veterinary Sciences of the University of Pisa aims to reinforce the collaboration among institutions for the management of mushroom poisoning. The core’s project aims to develop an internal genetic database to support the identification of wild and cultivated mushroom species in the Italian territory. The database will include Internal Transcribed Spacer (ITS) sequences retrieved from official databases (the NCBI GenBank and the BOLD system) which are considered to be reliable, after a proper selection process, and sequences from specimens collected directly and identified by expert mycologists. Once it is validated, the database will be available and further implementable by the official network of national laboratories.


2020 ◽  
Vol 41 (S1) ◽  
pp. s412-s412
Author(s):  
Sarah Redmond ◽  
Jennifer Cadnum ◽  
Basya Pearlmutter ◽  
Natalia Pinto Herrera ◽  
Curtis Donskey

Background: Transmission of healthcare-associated pathogens such as Clostridioides difficile and methicillin-resistant Staphylococcus aureus (MRSA) is a persistent problem in healthcare facilities despite current control measures. A better understanding of the routes of pathogen transmission is needed to develop effective control measures. Methods: We conducted an observational cohort study in an acute-care hospital to identify the timing and route of transfer of pathogens to rooms of newly admitted patients with negative MRSA nares results and no known carriage of other healthcare-associated pathogens. Rooms were thoroughly cleaned and disinfected prior to patient admission. Interactions of patients with personnel and portable equipment were observed, and serial cultures for pathogens were collected from the skin of patients and from surfaces, including those observed to come in contact with personnel and equipment. For MRSA, spa typing was used to determine relatedness of patient and environmental isolates. Results: For the 17 patients enrolled, 1 or more environmental cultures became positive for MRSA in rooms of 10 patients (59%), for C. difficile in rooms of 2 patients (12%) and for vancomycin-resistant enterococci (VRE) in rooms of 2 patients (12%). The patients interacted with an average of 2.4 personnel and 0.6 portable devices per hour of observation. As shown in Figure 1, MRSA contamination of the floor occurred rapidly as personnel entered the room. In a subset of patients, MRSA was subsequently recovered from patients’ socks and bedding and ultimately from the high-touch surfaces in the room (tray table, call button, bedrail). For several patients, MRSA isolates recovered from the floor had the same spa type as isolates subsequently recovered from other sites (eg, socks, bedding, and/or high touch surfaces). The direct transfer of healthcare-associated pathogens from personnel or equipment to high-touch surfaces was not detected. Conclusions: Healthcare-associated pathogens rapidly accumulate on the floor of patient rooms and can be transferred to the socks and bedding of patients and to high-touch surfaces. Healthcare facility floors may be an underappreciated source of pathogen dissemination not addressed by current infection control measures.Funding: NoneDisclosures: None


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Cui Zhang ◽  
Cihan Oguz ◽  
Sue Huse ◽  
Lu Xia ◽  
Jian Wu ◽  
...  

Abstract Background Rodent malaria parasites are important models for studying host-malaria parasite interactions such as host immune response, mechanisms of parasite evasion of host killing, and vaccine development. One of the rodent malaria parasites is Plasmodium yoelii, and multiple P. yoelii strains or subspecies that cause different disease phenotypes have been widely employed in various studies. The genomes and transcriptomes of several P. yoelii strains have been analyzed and annotated, including the lethal strains of P. y. yoelii YM (or 17XL) and non-lethal strains of P. y. yoelii 17XNL/17X. Genomic DNA sequences and cDNA reads from another subspecies P. y. nigeriensis N67 have been reported for studies of genetic polymorphisms and parasite response to drugs, but its genome has not been assembled and annotated. Results We performed genome sequencing of the N67 parasite using the PacBio long-read sequencing technology, de novo assembled its genome and transcriptome, and predicted 5383 genes with high overall annotation quality. Comparison of the annotated genome of the N67 parasite with those of YM and 17X parasites revealed a set of genes with N67-specific orthology, expansion of gene families, particularly the homologs of the Plasmodium chabaudi erythrocyte membrane antigen, large numbers of SNPs and indels, and proteins predicted to interact with host immune responses based on their functional domains. Conclusions The genomes of N67 and 17X parasites are highly diverse, having approximately one polymorphic site per 50 base pairs of DNA. The annotated N67 genome and transcriptome provide searchable databases for fast retrieval of genes and proteins, which will greatly facilitate our efforts in studying the parasite biology and gene function and in developing effective control measures against malaria.


2020 ◽  
Vol 367 (9) ◽  
Author(s):  
Natalya V Besarab ◽  
Artur E Akhremchuk ◽  
Maryna A Zlatohurska ◽  
Liudmyla V Romaniuk ◽  
Leonid N Valentovich ◽  
...  

ABSTRACT Fire blight, caused by plant pathogenic bacterium Erwinia amylovora, is one of the most important diseases of Rosaceae plants. Due to the lack of effective control measures, fire blight infections pose a recurrent threat on agricultural production worldwide. Recently, bacterial viruses, or bacteriophages, have been proposed as environmentally friendly natural antimicrobial agents for fire blight control. Here, we isolated a novel bacteriophage Hena1 with activity against E. amylovora. Further analysis revealed that Hena1 is a narrow-host-range lytic phage belonging to Myoviridae family. Its genome consists of a linear 148,842 bp dsDNA (48.42% GC content) encoding 240 ORFs and 23 tRNA genes. Based on virion structure and genomic composition, Hena1 was classified as a new species of bacteriophage subfamily Vequintavirinae. The comprehensive analysis of Hena1 genome may provide further insights into evolution of bacteriophages infecting plant pathogenic bacteria.


Sign in / Sign up

Export Citation Format

Share Document