scholarly journals Antimicrobial activity of bacteria isolated from tissue of the coral Palythoa caribaeorum (Zoantharia: Sphenopidae) from Paraíba, Brazil coastal reefs

2021 ◽  
Vol 69 (2) ◽  
Author(s):  
Jalcinês C. Pereira ◽  
Krystyna Gorlach-Lira ◽  
Bruno O. de Veras

Introduction: The coral-associated bacteria with antimicrobial activity may be important to promote the health of their host through various interactions, and may be explored as a source of new bioactive compounds. Objective: To analyze the antimicrobial activity of bacteria associated with the zoanthid Palythoa caribaeorum from the coral reefs of Carapibus, Paraiba state, Brazil. Methods: The phylogenetic analysis of the bacteria was conducted based on partial sequences of the 16S rRNA gene using molecular and bioinformatics tools. The antimicrobial activity of the 49 isolates was tested against four bacterial strains and one yeast strain: Bacillus cereus (CCT0198), Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), Pseudomonas aeruginosa and Candida albicans (ATCC 10231). The antibiosis and antibiogram assays were conducted and the Minimal Inhibitory Concentration (MIC) was determined by the microdilution method. Results: The bacterial isolates belonged to Firmicutes phylum (84 % of the isolates) and the Proteobacteria phylum (16 % of the isolates). Among the 49 isolates five genera were found, with the Bacillus genus being the most abundant (82 % of the isolates), followed by Vibrio (10 %), Pseudomonas (4 %), Staphylococcus (2 %) and Alteromonas (2 %). Antibiosis test revealed that 16 isolates (33 %) showed antimicrobial activity against one or more of five tested reference strains. The highest number of antagonistic bacteria were found in the Bacillus genus (12 isolates), followed by Vibrio (three isolates) and Pseudomonas (one isolate) genera. The B. subtilis NC8 was the only isolate that inhibited all tested strains in the antibiosis assay. However, antibiogram test with post-culture cell-free supernatant of NC8 isolate showed the inhibition of only B. cereus, S. aureus and C. albicans, and the lyophilized and dialyzed material of this isolate inhibited only B. cereus. The lyophilized material showed bacteriostatic activity against B. cereus, with a MIC value of 125 μg/μl, and in the cytotoxicity assay, the hemolysis value was of 4.8 %, indicating its low cytotoxicity. Conclusions: The results show the antimicrobial potential of some bacterial isolates associated with the P. caribaeourum tissue, especially those belonged to Bacillus genus.

2019 ◽  
Vol 20 (9) ◽  
Author(s):  
Meezan Ardhanu Asagabaldan ◽  
Gilles Bedoux ◽  
Nathalie Bourgougnon ◽  
Rhesi Kristiana ◽  
Diah Ayuningrum ◽  
...  

Abstract. Asagabaldan MA, Bedoux G, Bourgougnon N, Kristiana R, Ayuningrum D, Sabdono A, Trianto A, Radjasa OK. 2019. Bacterial isolates from bryozoan Pleurocodonellina sp.: Diversity and antimicrobial potential against pathogenic bacteria. Biodiversitas 20: 2528-2535.  There is an urgent need to discover new compounds with antibacterial activity, which can be developed into lead structures for the treatment of human disease caused by multidrug-resistant (MDR) bacteria. In this study, we focussed on bryozoan-associated bacteria to screen them toward antibacterial activities, since the microbiome of these organisms can still be regarded as under-investigated. Most of the few publications about bryozoan-associated bacteria focused on taxonomy and the potential as producers of antibacterial natural products were neglected. Four specimens of bryozoan Pleurocodonellina sp. were collected from Teluk Awur, Jepara in Java Sea, Indonesia. Therefrom, 56 bacterial strains were isolated, and 17 displayed antibacterial activities against MDR bacteria Pseudomonas aruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Enterobacter cloacae, and methicillin-resistant Staphylococcus aureus (MRSA). Taxonomic identification of the bacteria by 16S rRNA gene sequencing revealed them belonging to the genera Virgibacillus, Pseudoalteromonas, Halomonas, and Bacillus. Most interestingly, the genus Virgibacillus was dominantly obtained from the Pleurocodonellina sp. specimens, i.e., 12 active isolates. Nevertheless, the best activities against MDR bacteria (both Gram-positive and Gram-negative) were contributed to isolates showing >99% identity to Pseudoalteromonas. The results further suggest adding the genus Virgibacillus as bacteria associated with bryozoan, since to the best of our knowledge there were no reports of this genus isolated from bryozoan.


Toxins ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 712
Author(s):  
Sharif Zada ◽  
Sadia Alam ◽  
Samha Al Ayoubi ◽  
Qismat Shakeela ◽  
Sobia Nisa ◽  
...  

Zearalenone (ZEA) is a secondary metabolite produced by Fusarium spp., the filamentous fungi. Food and feed contamination with zearalenone has adverse effects on health and economy. ZEA degradation through microorganisms is providing a promising preventive measure. The current study includes isolation of 47 bacterial strains from 100 different food and rumen samples. Seventeen isolates showed maximum activity of ZEA reduction. A bacterial isolate, RS-5, reduced ZEA concentration up to 78.3% through ELISA analysis and 74.3% as determined through HPLC. Ten of the most efficient strains were further selected for comparison of their biodegradation activity in different conditions such as incubation period, and different growth media. The samples were analyzed after 24 hrs, 48 hrs, and 72 hrs of incubation. De Man Rogosa Sharp (MRS) broth, Tryptic soy broth, and nutrient broth were used as different carbon sources for comparison of activity through ELISA. The mean degradation % ± SD through ELISA and HPLC were 70.77% ± 3.935 and 69.11% ± 2.768, respectively. Optimum reducing activity was detected at 72 hrs of incubation, and MRS broth is a suitable medium. Phylogenetic analysis based on 16S rRNA gene nucleotide sequences confirmed that one of the bacterial isolate RS-5 bacterial isolates with higher mycotoxin degradation is identified as Bacillus subtilis isolated from rumen sample. B05 (FSL-8) bacterial isolate of yogurt belongs to the genus Lactobacillus with 99.66% similarity with Lactobacillus delbrukii. Similarly, three other bacterial isolates, D05, H05 and F04 (FS-17, FSL-2 and FS-20), were found to be the sub-species/strains Pseudomonas gessardii of genus Pseudomonas based on their similarity level of (99.2%, 96% and 96.88%) and positioning in the phylogenetic tree. Promising detoxification results were revealed through GC-MS analysis of RS-5 and FSL-8 activity.


2020 ◽  
Vol 36 (6) ◽  
Author(s):  
Cleberton Torres Santos ◽  
Luiz Eduardo Oliveira Teotônio ◽  
Ana Paula Leite Nascimento ◽  
Darcio Luiz de Sousa Júnior ◽  
Ítalo Mykaell da Silva Benjamin ◽  
...  

Baccharis cinerea belongs to the Asteraceae family, in Brazil is found in the Northeast and Southeast, occurring in the Caatinga and Mata Atlântica biomes, on the edges of the seasonal forests, board and altitude forests in both regenerating primary and secondary areas. Has proven antimicrobial and antiviral activity and is widely used in folk medicine for its various therapeutic effects and is used as an antiseptic for skin and wound infections, inflammation, diarrhea as well as being used as a purgative. The plants used in the traditional medicine are more and more explored scientifically because they are possible resources of substances with antimicrobial activity in front damage man’s health microorganism. In this context the objective of the study was to investigate the antimicrobial activity, modulator activity of antibiotic and in vitro phytochemical prospection of leaf ethanol extracts. Tests were performed on the bacterial strains of Staphylococcus aureus (ATCC 25923), Pseudomonas aeruginosa (ATCC 15442) and Escherichia coli (ATCC 10536). The antibacterial activity was analyzed by means determining the Minimum Inhibitory Concentration (MIC). For the evaluation of the modulating activity, the microdilution method of the diluted extract samples with the antibiotic’s amikacin, clindamycin and gentamicin was used. The MIC results were ≥ 1024 μg mL-1 by the bacterial strains. There was a relevance of concentrations in modulation with the antimicrobials tested such as amikacin and gentamicin, there were no discrepancy of clindamycin results in association with the extract. The chemical constituents found were leucoanthocyanidins, flabobenic tannins, flavanones, flavones, flavonoids, xanthones, chalcones, aurones. It is important to note that is necessary to do other studies to evaluate the potential of this species because it has important chemical compounds in reducing antimicrobial resistance.


Author(s):  
Tatiana Areas Cruz ◽  
Fernanda Rodrigues Torres ◽  
Monise Fazolin Petrucelli ◽  
Mariana Heinzen De Abreu ◽  
Silvia Sidneia Silva ◽  
...  

Objective:to evaluate antimicrobial and synergistic activity of essential oils (Citrus aurantifolia, Citrus sinensis, Mentha viridisand Thymus vulgaris) against isolated bacteria from surgical staff’s hands and bacterial strains. Method:the antimicrobial activity of oils was analyzed by microdilution method to determine the Minimum Inhibitory Concentration. Moreover, the combinatory effect of the oil that presented greater effectiveness using gentamycin sulphate through the Fractional Inhibitory Concentration index was tested. The study was performed over the period 2016-2018. Results:T. vulgaris was effective against Staphylococcus saprophyticus with a concentration of 0.0008 µL.mL-1and against the ATCC standard strains of Staphylococcus aureus, Salmonella choleraesuis,Staphylococcus epidermidis and Proteus vulgarisand the bacteria S. aureus, S. epidermidisand Bacillus sp. with MIC ≥ 0.10 µL.mL-1. This oil association with gentamycin sulphate showed synergistic activity againstS. epidermidis. Conclusion:T. vulgarisessential oil showed expressive antimicrobial activity against ATCC and isolated clinic microorganisms, suggesting broad spectrum of activity.


2014 ◽  
Vol 63 (3) ◽  
pp. 291-298
Author(s):  
ANNA LISEK ◽  
LIDIA SAS PASZ ◽  
PAWEŁ TRZCIŃSKI

Bacteria of the genus Pseudomonas are often components of bioproducts designed to enhance the condition of the soil and plants. The use of Pseudomonas bacteria in bioproducts must be preceded by the acquisition, characterization and selection of beneficial strains living in the soil. A prerequisite for the selection of bacterial strains for use in bioproducts is to be able to identify the isolates rapidly and accurately. To identify and differentiate 15 bacterial isolates obtained from the soil surrounding the roots of sour cherry trees and to assess their genetic similarity, the rep-PCR technique and restriction analysis of the 16S rRNA gene and the 16S-ITS-23S rRNA operon were used. In addition, a sequence analysis of the 16S rRNA gene was performed. The analyses made it possible to divide the isolates into four clusters and to confirm their affiliation with the Pseudomonas species. RFLP analysis of the 16S-ITS-23S rRNA operon enabled greater differentiation of the isolates than RFLP of the 16S rRNA gene. The greatest differentiation of isolates within the clusters was obtained after using the rep-PCR technique. However, none of the techniques was able to discriminate all the isolates, which indicates very high genetic similarity of the Pseudomonas isolates found in the same sample of soil from around the roots of sour cherry trees. The tests performed will find application for distinguishing and identifying Pseudomonas strains collected from the soil in order to select the most valuable bacterial strains that produce beneficial effects on plants.


2010 ◽  
Vol 64 (3) ◽  
Author(s):  
Zorica Stojanović-Radić ◽  
Ljiljana Čomić ◽  
Niko Radulović ◽  
Milan Dekić ◽  
Vladimir Ranđelović ◽  
...  

AbstractThe present study gives results of chemical composition analyses and antimicrobial activity testing of three Erodium species: E. ciconium L., E. cicutarium L., and E. absinthoides Willd. Essential oils were obtained by hydro-distillation from air-dried entire plants and analyzed by GC and GC-MS. A total of 209 different compounds were identified: 162 for E. cicutarium, 107 for E. ciconium, and 79 for E. absinthoides. Antimicrobial activity (broth microdilution method) of the oils was screened against a panel of Gram positive and Gram negative bacteria and a number of fungi. Moderate susceptibility of all tested strains was observed. Determined MIC values were 0.156–5 mg mL−1 (bacterial strains) and 0.039–0.325 mg mL−1 (fungal strains). Major component of the most active oil, palmitic acid, was also tested for activity together with stearic and myristic acids.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Parisa Shokryazdan ◽  
Chin Chin Sieo ◽  
Ramasamy Kalavathy ◽  
Juan Boo Liang ◽  
Noorjahan Banu Alitheen ◽  
...  

The objective of this study was to isolate, identify, and characterize some lactic acid bacterial strains from human milk, infant feces, and fermented grapes and dates, as potential probiotics with antimicrobial activity against some human pathogenic strains. One hundred and forty bacterial strains were isolated and, after initial identification and a preliminary screening for acid and bile tolerance, nine of the best isolates were selected and further identified using 16 S rRNA gene sequences. The nine selected isolates were then characterizedin vitrofor their probiotic characteristics and their antimicrobial activities against some human pathogens. Results showed that all nine isolates belonged to the genusLactobacillus. They were able to tolerate pH 3 for 3 h, 0.3% bile salts for 4 h, and 1.9 mg/mL pancreatic enzymes for 3 h. They exhibited good ability to attach to intestinal epithelial cells and were not resistant to the tested antibiotics. They also showed good antimicrobial activities against the tested pathogenic strains of humans, and most of them exhibited stronger antimicrobial activity than the reference strainL. caseiShirota. Thus, the nineLactobacillusstrains could be considered as potential antimicrobial probiotic strains against human pathogens and should be further studied for their human health benefits.


Author(s):  
Rosa Amalia ◽  
Diah Ayuningrum ◽  
Agus Sabdono ◽  
Ocky Karna Radjasa

The coral reefs’ condition in most regions in Indonesia has been declining due to coral diseases, such as Brown Band Disease (BrBD). A treatment for BrBD involves the use of biological control agents that have antagonistic properties against disease-causing agents. This study aimed to isolate bacteria from healthy hard coral, those associated with BrBD, and those that had bioactivities against BrBD. Sampling and identification of corals and BrBD were carried out in March 2015 at the Marine National Park of Karimunjawa. Bacteria from healthy and infected corals were isolated and purified. The isolates were subjected to antipathogenic assay using overlay and agar diffusion methods. Finally, molecular identification of active bacteria was carried out using the 16S rRNA gene amplification. As many as 57 bacterial isolates were obtained from healthy coral, as well as four bacterial isolates from coral with BrBD symptoms. A total of 15 bacterial isolates (26%) showed antipathogenic activity against BrBD-associated bacteria. Three isolates with the strongest antipathogenic activities, i.e., GAMSH 3, KASH 6, and TAPSH 1 were identified by 16S rRNA gene sequences. The results showed that they were aligned to Virgibacillus marismortui (97%), Oceanobacillus iheyensis (97%), and Bacillus cereus (96%), respectively.


2010 ◽  
Vol 9 (1) ◽  
Author(s):  
Hermawaty Abubakar

<p><em>Sponges</em><em> are one of the components that compose coral reef which have a potential bioactive substance that has not been utilized. Sponges are generally able to survive in marine waters were nutrients are poor because of associations with other organisms, especially bacteria. This study aimed to isolate and characterize bacteria (endosymbiont and ectosimbion) that produce antimicrobial compounds, and analyze genetic diversity based on Amplified Ribosomal DNA Restriction Analysis (ARDRA). The results of isolation obtained 138 bacterial isolates, which are 70 endofit isolates and 68 surfaces isolates respectively. The results obtained, based on antimicrobial test, was 32 bacterial isolates (45.71%) of the total bacterial isolates that have endofit antimicrobial activity, whereas on the surface bacteria, 20 bacterial isolates (29.41%) of the total surface of the bacterial isolates also have antimicrobial activity. Genetic diversity was carried out on 30 isolates that has the best antimicrobial activity. Amply</em><em>fi</em><em>cation of 16S rRNA gene is done using specific primers, 63f and 1387r. The profile of 16S rRNA gene band shows a </em><em>high </em><em>diversity, which is generated after cutting with three restriction enzymes </em><em>i.e.</em><em> </em><em>RsaI</em><em>, HaeIII and HinfI. The three restriction enzymes have different cuts and properties. Construction of phylogenetic trees based on analysis of Amplified Ribosomal DNA restriction, grouped 30 isolates from the sponge Jaspis sp. which have a microbial activity on seven filotipe. This grouping is based on the similarities cuts of sites of each isolate after restriction by three different restriction enzymes.</em></p>


2018 ◽  
Vol 2 (2) ◽  
pp. 82-91 ◽  
Author(s):  
Alyssa T. Cochran ◽  
Jemma Bauer ◽  
Jessica L. Metcalf ◽  
Petra Lovecka ◽  
Martina Sura de Jong ◽  
...  

Little is known about the microbiomes associated with plants with unusual properties, including plants that hyperaccumulate toxic elements such as selenium (Se). Se hyperaccumulators contain up to 1.5% of their dry weight in Se, concentrations shown to affect ecological interactions with herbivores, fungal pathogens and neighboring plants. Hyperaccumulators also enrich their surrounding soil with Se, which may alter the rhizobiome. To investigate whether plant Se affects rhizobacterial diversity and composition, we used a combination of culture-independent and culture-based approaches. Sequencing of 16S rRNA gene amplicons using the Illumina platform revealed that the rhizosphere microbiomes of Se hyperaccumulators were significantly different from nonaccumulators from the same site, with a higher average relative abundance of Pedobacter and Deviosa. Additionally, hyperaccumulators harbored a higher rhizobacterial species richness when compared with nonaccumulators from the same family on the same site. Independent from Se present at the site or in the host plant, the bacterial isolates were extremely resistant to selenate and selenite (up to 200 mM) and could reduce selenite to elemental Se. In conclusion, Se hyperaccumulation does not appear to negatively affect rhizobacterial diversity, and may select for certain taxa in the rhizosphere microbiome. Additionally, Se resistance in hyperaccumulator-associated bacteria and archaea may be widespread and not under selection by the host plant.


Sign in / Sign up

Export Citation Format

Share Document