Effect of cadmium on growth and oxidative metabolism of faba bean plants

2004 ◽  
Vol 52 (3) ◽  
pp. 269-276 ◽  
Author(s):  
H. R. Moussa

The effect of CdCl2(0-50 µM) on the growth, physiological parametersand leaf antioxidative enzymes of faba bean plants was studied in order toinvestigate the possible involvement of this metal in the generationof oxidative stress. In the roots and leaves of faba bean plants Cd produceda significant inhibition of growth, as well as a reduction inthe transpiration rate, photosynthetic efficiency (14CO2-fixation), ribulose-1,5-bisphosphate-carboxylase/oxygenase (Rubisco) activity and leaf pigment content, and an alteration in the nutrient status in booth roots and leaves. an increased level of free proline was also detected. The results suggest thatthe treatment of faba bean plants with CdCl2 induced a concentration-dependentoxidative stress situation in the leaves, characterized by an accumulationof  H2O2, as a result of theinhibition of the antioxidant enzymes glutathione reductase (GR) and catalase (CAT). These results point to the possible inductionof leaf senescence by cadmium.

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 173
Author(s):  
Abeer F. Desouky ◽  
Ahmed H. Ahmed ◽  
Hartmut Stützel ◽  
Hans-Jörg Jacobsen ◽  
Yi-Chen Pao ◽  
...  

Pathogenesis-related (PR) proteins are known to play relevant roles in plant defense against biotic and abiotic stresses. In the present study, we characterize the response of transgenic faba bean (Vicia faba L.) plants encoding a PR10a gene from potato (Solanum tuberosum L.) to salinity and drought. The transgene was under the mannopine synthetase (pMAS) promoter. PR10a-overexpressing faba bean plants showed better growth than the wild-type plants after 14 days of drought stress and 30 days of salt stress under hydroponic growth conditions. After removing the stress, the PR10a-plants returned to a normal state, while the wild-type plants could not be restored. Most importantly, there was no phenotypic difference between transgenic and non-transgenic faba bean plants under well-watered conditions. Evaluation of physiological parameters during salt stress showed lower Na+-content in the leaves of the transgenic plants, which would reduce the toxic effect. In addition, PR10a-plants were able to maintain vegetative growth and experienced fewer photosystem changes under both stresses and a lower level of osmotic stress injury under salt stress compared to wild-type plants. Taken together, our findings suggest that the PR10a gene from potato plays an important role in abiotic stress tolerance, probably by activation of stress-related physiological processes.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 894
Author(s):  
Emad M. Hafez ◽  
Hany S. Osman ◽  
Usama A. Abd El-Razek ◽  
Mohssen Elbagory ◽  
Alaa El-Dein Omara ◽  
...  

The continuity of traditional planting systems in the last few decades has encountered its most significant challenge in the harsh changes in the global climate, leading to frustration in the plant growth and productivity, especially in the arid and semi-arid regions cultivated with moderate or sensitive crops to abiotic stresses. Faba bean, like most legume crops, is considered a moderately sensitive crop to saline soil and/or saline water. In this connection, a field experiment was conducted during the successive winter seasons 2018/2019 and 2019/2020 in a salt-affected soil to explore the combined effects of plant growth-promoting rhizobacteria (PGPR) and potassium (K) silicate on maintaining the soil quality, performance, and productivity of faba bean plants irrigated with either fresh water or saline water. Our findings indicated that the coupled use of PGPR and K silicate under the saline water irrigation treatment had the capability to reduce the levels of exchangeable sodium percentage (ESP) in the soil and to promote the activity of some soil enzymes (urease and dehydrogenase), which recorded nearly non-significant differences compared with fresh water (control) treatment, leading to reinstating the soil quality. Consequently, under salinity stress, the combined application motivated the faba bean vegetative growth, e.g., root length and nodulation, which reinstated the K+/Na+ ions homeostasis, leading to the lessening or equalizing of the activity level of enzymatic antioxidants (CAT, POD, and SOD) compared with the controls of both saline water and fresh water treatments, respectively. Although the irrigation with saline water significantly increased the osmolytes concentration (free amino acids and proline) in faba bean plants compared with fresh water treatment, application of PGPR or K-silicate notably reduced the osmolyte levels below the control treatment, either under stress or non-stress conditions. On the contrary, the concentrations of soluble assimilates (total soluble proteins and total soluble sugars) recorded pronounced increases under tested treatments, which enriched the plant growth, the nutrients (N, P, and K) uptake and translocation to the sink organs, which lastly improved the yield attributes (number of pods plant−1, number of seeds pod−1, 100-seed weight). It was concluded that the combined application of PGPR and K-silicate is considered a profitable strategy that is able to alleviate the harmful impact of salt stress alongside increasing plant growth and productivity.


2018 ◽  
Vol 19 (10) ◽  
pp. 3195 ◽  
Author(s):  
Sreeja Sarasamma ◽  
Gilbert Audira ◽  
Stevhen Juniardi ◽  
Bonifasius Sampurna ◽  
Sung-Tzu Liang ◽  
...  

In this study, we evaluated the acute (24, 48, 72, and 96 h) and chronic (21 days) adverse effects induced by low doses (0.1, 0.5, 1, and 1.5 mg/L) of zinc chloride (ZnCl2) exposure in adult zebrafish by using behavioral endpoints like three-dimensional (3D) locomotion, passive avoidance, aggression, circadian rhythm, and predator avoidance tests. Also, brain tissues were dissected and subjected to analysis of multiple parameters related to oxidative stress, antioxidant responses, superoxide dismutase (SOD), neurotoxicity, and neurotransmitters. The results showed that ZnCl2-exposed fishes displayed decreased locomotor behavior and impaired short-term memory, which caused an Alzheimer’s Disease (AD)-like syndrome. In addition, low concentrations of ZnCl2 induced amyloid beta (amyloid β) and phosphorylated Tau (p-Tau) protein levels in brains. In addition, significant induction in oxidative stress indices (reactive oxygen species (ROS) and malondialdehyde (MDA)), reduction in antioxidant defense system (glutathione (GSH), GSH peroxidase (GSH-Px) and SOD) and changes in neurotransmitters were observed at low concentrations of ZnCl2. Neurotoxic effects of ZnCl2 were observed with significant inhibition of acetylcholine (ACh) activity when the exposure dose was higher than 1 ppm. Furthermore, we found that zinc, metallothionein (MT), and cortisol levels in brain were elevated compared to the control group. A significantly negative correlation was observed between memory and acetylcholinesterase (AChE) activity. In summary, these findings revealed that exposure to ZnCl2 affected the behavior profile of zebrafish, and induced neurotoxicity which may be associated with damaged brain areas related to memory. Moreover, our ZnCl2-induced zebrafish model may have potential for AD-associated research in the future.


2019 ◽  
Vol 20 (9) ◽  
pp. 2327 ◽  
Author(s):  
Marcello Iriti ◽  
Alessio Scarafoni ◽  
Simon Pierce ◽  
Giulia Castorina ◽  
Sara Vitalini

EM (effective microorganisms) is a biofertilizer consisting of a mixed culture of potentially beneficial microorganisms. In this study, we investigated the effects of EM treatment on leaf in vivo chlorophyll a fluorescence of photosystem II (PSII), yield, and macronutrient content of bean plants grown on different substrates (nutrient rich substrate vs. nutrient poor sandy soil) in controlled environmental conditions (pot experiment in greenhouse). EM-treated plants maintained optimum leaf photosynthetic efficiency two weeks longer than the control plants, and increased yield independent of substrate. The levels of seed nutritionally-relevant molecules (proteins, lipids, and starch) were only slightly modified, apart from the protein content, which increased in plants grown in sandy soil. Although EM can be considered a promising and environmentally friendly technology for sustainable agriculture, more studies are needed to elucidate the mechanism(s) of action of EM, as well as its efficacy under open field conditions.


2017 ◽  
Vol 372 (1730) ◽  
pp. 20160543 ◽  
Author(s):  
Samuel H. Taylor ◽  
Stephen P. Long

Wheat is the second most important direct source of food calories in the world. After considerable improvement during the Green Revolution, increase in genetic yield potential appears to have stalled. Improvement of photosynthetic efficiency now appears a major opportunity in addressing the sustainable yield increases needed to meet future food demand. Effort, however, has focused on increasing efficiency under steady-state conditions. In the field, the light environment at the level of individual leaves is constantly changing. The speed of adjustment of photosynthetic efficiency can have a profound effect on crop carbon gain and yield. Flag leaves of wheat are the major photosynthetic organs supplying the grain of wheat, and will be intermittently shaded throughout a typical day. Here, the speed of adjustment to a shade to sun transition in these leaves was analysed. On transfer to sun conditions, the leaf required about 15 min to regain maximum photosynthetic efficiency. In vivo analysis based on the responses of leaf CO 2 assimilation ( A ) to intercellular CO 2 concentration ( c i ) implied that the major limitation throughout this induction was activation of the primary carboxylase of C3 photosynthesis, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This was followed in importance by stomata, which accounted for about 20% of the limitation. Except during the first few seconds, photosynthetic electron transport and regeneration of the CO 2 acceptor molecule, ribulose-1,5-bisphosphate (RubP), did not affect the speed of induction. The measured kinetics of Rubisco activation in the sun and de-activation in the shade were predicted from the measurements. These were combined with a canopy ray tracing model that predicted intermittent shading of flag leaves over the course of a June day. This indicated that the slow adjustment in shade to sun transitions could cost 21% of potential assimilation. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’.


2021 ◽  
Vol 48 (2) ◽  
pp. 459-468
Author(s):  
Doha Fathy ◽  
A. Eldomiaty ◽  
H. Abd El-Fattah ◽  
E. Mahgoub ◽  
A. Hassanin

Plant Disease ◽  
2000 ◽  
Vol 84 (6) ◽  
pp. 707-707 ◽  
Author(s):  
M. Babin ◽  
V. Ortíz ◽  
S. Castro ◽  
J. Romero

Faba bean necrotic yellow virus (FBNYV) was not detected during 1994 to 1996 field surveys of faba beans (Vicia faba L.) in Spain (1). In 1997, however, one sample with symptoms of necrosis, collected in Baleares, was tested using ELISA (enzyme-linked immunosorbent assay) and was positive for both Tomato spotted wilt virus (TSWV) and FBNYV. FBNYV is a single-strand DNA virus that is transmitted by aphids and is the main virus disease of broad bean in North Africa and West Asia (2). During 1997 to 1999, faba bean plants with symptoms of necrosis, yellowing, small leaves, and stunting were collected from several fields in the Murcia Region (Spain) and were analyzed using ELISA. To detect FBNYV, we used monoclonal 2E9 supplied by H. J. Vetten (Institute of Plant Virology, Microbiology and Biosafety, BBA, Braunschweig, Germany). Of 700 samples analyzed, 34 were positive for FBNYV. Of the 34 positive samples, 12 tested positive, using commercial antiserum from Loewe, Inc. (Munich) for mixed infections with TSWV. FBNYV was transmitted to healthy faba bean plants by aphids (Acyrthosiphon pisum) in greenhouse experiments and was confirmed by ELISA. Preliminary epidemiological data showed a gradual increase in the number of plants infected with time in the same field. Aphid transmission of FBNYV to faba beans has established the disease in Spain and is a potential threat to other leguminous crops. This is the first report of a nanovirus in Europe. References: (1) J. Fresno et al. Plant Dis. 81:112, 1997. (2) L. Katul et al. Ann. Appl. Biol. 123:629, 1993.


Sign in / Sign up

Export Citation Format

Share Document