Standardization of dosage of liquid and cyst formulations of Azospirillum for different application methods

2007 ◽  
Vol 55 (4) ◽  
pp. 475-484 ◽  
Author(s):  
R. Thamizh Vendan ◽  
M. Thangaraju

Azospirillum bioinoculant is well known for its high nitrogen-fixing and plant growth-promoting characters. Carrier-based bioinoculants generally suffer from shorter shelf-life, poor quality, high contamination and low field performance. As an alternative, the liquid and cyst formulations of Azospirillum inoculants can play a significant role. Liquid and cyst formulations of Azospirillum were developed by adding amendments to the NFb broth and to MSM medium, respectively, which have longer shelf-life and tolerance to adverse conditions such as temperature and desiccation. The dosage of liquid and cyst-based formulations of Azospirillum for various inoculation methods such as seed treatment, seedling root dipping and soil application was standardized and their survival was studied. Inoculum levels of 10 ml/kg seeds, 150 ml/quantity of seedlings required for 1 ha and 300 ml/ha were found to be the optimum doses for seed treatment, seedling root dipping and soil application methods, respectively. The liquid and cyst formulations of Azospirillum have exhibited better adherence and survival on seeds, seedling roots and in the rhizosphere than the carrier-based form. These results indicated that there is substantial room to improve the liquid and cyst formulations of Azospirillum inoculant to obtain the desired benefits.

Author(s):  
Santosh Onte ◽  
Nitin N Gudadhe ◽  
Nilima Karmakar ◽  
Raju G. Ladumor

A field experiment was conducted during rabi season of 2015-2016 at Navsari Agricultural University, Navsari to study the impact of cobalt application methods on chickpea yield, nutrient content and soil status. Four cobalt application methods with three levels of each were evaluated with one absolute control and one with seed priming of water were evaluated with randomized block design with three replications. Least level of seed treatment, soil application and foliar application of cobalt gave highest chickpea seed yield and decreased there after. As cobalt levels increased, NPK content and uptake are decreased linearly in all the methods except seed priming method, however cobalt content and uptake increased linearly by seed treatment and foliar application, on the contrary it decreased linearly by seed priming and soil application of cobalt. Soil application of cobalt at 50 g ha-1 recorded highest chickpea seed yield, residual NPK and Co and which can be useful for succeeding crop and this can be recommended from the cobalt nutrition point of view in plants and animals followed by seed priming at 1 ppm.


Author(s):  
Anju Sehrawat ◽  
Aarti Yadav ◽  
R. C. Anand ◽  
Kamlesh Kukreja ◽  
Sunita Suneja

To solve the shorter shelf life, high contamination, poor quality, low field performance and processing solid carrier in carrier based bioinoculant formulation had necessitated the shifting of carrier based inoclants to liquid inoculants technology. Three different polymeric additives; polyvinyl pyrrolidone, gum arabic and glycerol were evaluated for their ability to support growth and promote survival ofliquid inoculants (Rhizobium sp. strain MB1503) during the storage. All liquid rhizobial inoculants prepared in amended media showed higher viable count in comparison to inoculants prepared in YEMB (control) at 180 d of storage. Maximum survival was observed in inoculants prepared in YEMB amended with2% PVP, 2% GA and1% GA. Mungbean (Vigna radiata L.) seeds treated with 90 d old liquid rhizobial inoculant of strain MB1503 amended with 1% PVP or 2% glycerol enhanced plant growth as compared to uninoculated control. The present investigation revealed that treatments inoculated with 90 d old inoculant + amendments (added before or after the growth) were significantly better with respect to nodule weight, shoot weight and total plant nitrogen as compared to uninoculated control/treatment.


Author(s):  
Hasrat Arjjumend ◽  
Konstantia Koutouki ◽  
Olga Donets

The use of unsustainable levels of chemical fertilizers and plant protection chemicals has resulted in a steady decline in soil and crop productivity the world over. Soil biology has undergone irreversible damage, coupled with a high concentration of toxic chemical residues in plant tissues and human bodies. Agricultural practices must evolve to sustainably meet the growing global demand for food without irreversibly damaging soil. Microbial biocontrol agents have tremendous potential to bring sustainability to agriculture in a way that is safe for the environment. Biopesticides do not kill non-target insects, and biosafety is ensured because biopesticides act as antidotes and do not lead to chemical contamination in the soil. This article is part of a larger study conducted in Ukraine by researchers at the Université de Montréal with the support of Mitacs and Earth Alive Clean Technologies. The responses of farmers who use biofertilizers (“user farmers”) and those who do not (“non-user farmers”), along with the responses of manufacturers or suppliers of biofertilizers, and research and development (R&D) scientists are captured to demonstrate the advantages of applying microbial biopesticides to field crops. Participants reported a 15-30% increase in yields and crop production after the application of biopesticides. With the use of biopesticides, farmers cultivated better quality fruits, grains, and tubers with a longer shelf life. Moreover, while the risk of crop loss remains high (60-70%) with chemically grown crops, this risk is reduced to 33% on average if crops are grown using biopesticides. The findings indicate that a large proportion of farmers would prefer to use biopesticides if they are effective and high quality products. In this context, the quality and effectiveness of products is therefore very important. Despite their benefits to soil, human health, and ecosystems, biopesticides face significant challenges and competition vis-à-vis synthetic pesticides for a variety of reasons. Therefore, the development of biopesticides must overcome the problems of poor quality products, short shelf life, delayed action, high market costs, and legal/registration issues.


2020 ◽  
Vol 4 (1) ◽  
pp. 229-238
Author(s):  
Dayang Rahmanita Simanjuntak ◽  
Halimursyadah Halimursyadah ◽  
Syamsuddin Syamsuddin

Abstrak. Biological seed treatment merupakan salah satu perlakuan benih menggunakan mikroorganisme seperti rizobakteri pemacu pertumbuhan tanaman (RPPT). Penelitian ini bertujuan untuk mengetahui jenis rizobakteri dan kerapatan inokulum yang dapat meningkatkan viabilitas dan vigor benih cabai kadaluarsa. Penelitian ini menggunakan Rancangan Acak Lengkap (RAL) pola faktorial dengan 2 faktor dan 3 ulangan. Faktor pertama adalah jenis rizobakteri (R) terdiri atas lima taraf yaitu R1: Necercia sp; R2:Bacillus polymixa; R3: Actinobacillus suis; R4: Azotobacter sp; R5: Pseudomonas capacia. Faktor kedua adalah kerapatan inokulum rizobakteri terdiri dari tiga taraf yaitu K1: 107 cfu/ml; K2: 108 cfu/ml; K3: 109 cfu/ml. Hasil penelitian ini menunjukkan bahwa perlakuan benih menggunakan rizobakteri jenis Necercia sp dengan kerapatan inokulum 108 cfu/ml nyata meningkatkan vigor benih pada tolok ukur  indeks vigor yaitu 40% dan Pseudomonas capacia dengan kerapatan inokulum 109 cfu/ml juga merupakan kombinasi perlakuan terbaik dalam meningkatkan berat kering kecambah normal yaitu 69,33 mg.Treatment Of Plant Growth Promoting Rhizobacteria (PGPR)With Multiple Levels of Rhizobacteria Inoculum Density On Viability and Vigor Of Expired Red Chilli Seeds (Capsicum annuum L.Abstract. Biological seed treatment is one of the seed treatment using microorganisms such as plant growth-promoting rhizobacteria (PGPR). This study aims to determine the type of rhizobacteria and inoculum density that can increase the viability and vigor of expired chili seeds. This research uses Completely Randomized Design (CRD) factorial pattern with 2 factors and 3 replications. The first factor is the type of rhizobacteria (R) consists of five levels, namely R1: Necercia sp; R2: Bacillus polymixa; R3: Actinobacillus suis; R4: Azotobacter sp; R5: Pseudomonas capacia. The second factor is the density of rhizobacteria inoculum consisting of three levels namely K1: 107 cfu/ml; K2: 108 cfu/ml; K3: 109 cfu/ml. The results of this study showed that the seed treatment using the Necercia sp-type rizobacteria with 108 cfu/ml inoculum density significantly increased the seed vigor on the vigor index benchmark of 40% and Pseudomonas capacia with 109cfu/ml inoculum density was also the best treatment combination in increasing dry weight normal sprout is 69,33 mg. 


Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 498
Author(s):  
Muhammad Moaaz Ali ◽  
Talha Javed ◽  
Rosario Paolo Mauro ◽  
Rubab Shabbir ◽  
Irfan Afzal ◽  
...  

The seed industry and farmers have challenges, which include the production of poor quality and non-certified tomato seed, which ultimately results in decreased crop production. The issue carefully demands pre-sowing treatments using exogenous chemical plant growth-promoting substances. Therefore, to mitigate the above-stated problem, a series of experiments were conducted to improve the quality of tomato seeds (two cultivars, i.e., “Sundar” and “Ahmar”) and to enhance the stand establishment, vigor, physiological, and biochemical attributes under growth chamber and greenhouse conditions by using potassium nitrate (KNO3) as a seed priming agent. Seeds were imbibed in 0.25, 0.50, 0.75, 1.0, and 1.25 KNO3 (weight/volume) for 24 h and then dried before experiments. The results of growth chamber and greenhouse screening show that experimental units receiving tomato seeds primed with 0.75% KNO3 in both cultivars performed better as compared to other concentrations and nonprimed control. Significant increase in final emergence (%), mean emergence time, and physiological attributes were observed with 0.75% KNO3. Collectively, the improved performance of tomato due to seed priming with 0.75% KNO3 was linked with higher activities of total soluble sugars and phenolics under growth chamber and greenhouse screening.


2019 ◽  
Vol 40 (4) ◽  
pp. 1469
Author(s):  
José Carlos Ribeiro Júnior ◽  
Aline Marangon de Oliveira ◽  
Fernando Godoi Silva ◽  
Lorena Natalino Haber Garcia ◽  
Cátia Maria de Oliveira Lobo ◽  
...  

The dairy industry strives to produce high quality products with high nutritional value as well as to meet the legal standards for longer shelf life. However, these goals are made unfeasible by the poor quality of raw milk produced in some regions of Brazil. Others Brazilian dairy regions, however, already succeed in producing milk with low microbial counts, such as the municipality of Castro, Paraná state, designated as the ‘Brazilian dairy capital’. In order to evaluate the effect of raw milk quality on microbial counts during the shelf life of pasteurized milk, samples were collected from two dairy regions of Paraná: the northern and Castro region, characterized by milk production with high and low microbiological counts, respectively. Samples were experimentally pasteurized and the total microorganism counts were analyzed for 18 days at 7°C, using the Brazilian standard microbiological count limit for pasteurized milk (8 x 104 CFU/mL) as the end of the shelf life. Low microbiological counts in raw milk (Castro) resulted in significantly lower counts shortly after pasteurization and over the entire shelf life, meeting the pasteurized milk standard for 18 days. The temporal evolution in the counts over 18 days for the milks of high and low microbiological count was similar; however, the disparity between the absolute counts between the regions was significant (p < 0.05). Of the milk samples from northern Paraná, four (44.4%) already had counts higher than that of the legislative limit for pasteurized milk immediately after pasteurization. The others (five) reached the maximum microbiological count limit for pasteurized milk on the 6th day after pasteurization. In contrast, the milk from the Castro region remained below the limit throughout the analysis period. Thus, it can be stated that the microbiological quality of raw milk is directly related to the initial count of microorganisms after pasteurization, and that pasteurized milk produced from raw milk with low microbiological counts complies with the Brazilian legislation for 18 days following thermal processing.


2019 ◽  
Vol 9 (18) ◽  
pp. 3847 ◽  
Author(s):  
Mingtang Tan ◽  
Peiyun Li ◽  
Wenhui Yu ◽  
Jinfeng Wang ◽  
Jing Xie

This study aimed to investigate the effects of glazing with sodium polyacrylate (SP) and D-sodium erythorbate (DSE) on the quality changes of squid during frozen storage. Frozen squid samples were randomly divided into seven groups: (1) CK (unglazed); (2) WG (distilled water-glazed); (3) SG (0.1% SP -glazed); (4) SG-1DSE (0.1% SP with 0.1% DSE -glazed); (5) SG-3DSE (0.1% SP with 0.3% DSE-glazed); (6) SG-5DSE (0.1% SP with 0.5% DSE-glazed); (7) WG-1DSE (0.1% DSE-glazed). The efficacy of the different coatings was evaluated using various indicators, such as water holding capacity (WHC), pH value, low field nuclear magnetic resonance (LF-NMR), color, malondialdehyde (MDA) content value, free amino acids (FAAs) content, intrinsic fluorescence intensity (IFI) and the total sulfhydryl content (SH) content. Intrinsic fluorescence intensity (IFI) and low field nuclear magnetic resonance (LF-NMR) were used as fast monitoring techniques to monitor changes in quality of squid samples. The results showed that compared with the CK and WG groups, coating with either SG or DSE alone resulted in reduced rate of moisture loss (p < 0.05), lipid oxidation (p < 0.05) protein degradation (p < 0.05) and prolonged its shelf-life. The combination of glazing treatment with SG and DSE (groups SG-1DSE, SG-3DSE and SG-5DSE) further improved the protective effects of coating, particularly in the SG-3DSE group. Therefore, the glazing of SG-3DSE is recommended to be used to control the quality of frozen squid and to prolong its shelf-life during frozen storage.


1989 ◽  
Vol 4 (1) ◽  
pp. 21-24 ◽  
Author(s):  
Stephen D. Hobbs ◽  
Michael S. Crawford ◽  
Beverly A. Yelczyn

Abstract Three stocktypes of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) were planted in a droughty, skeletal soil in southwest Oregon. After 5 years, container-grown plugs and plug-1 transplants survived significantly better than 2-0 bareroots. Seedling root systems were largely confined to the surface soil, with relatively little development upslope or deeper than 15 cm. Stocktype morphology differed significantly at planting. However, annual absolute growth, annual relative growth, and shoot and root characteristics did not differ significantly after 5 years. These results suggest that, on similar sites, seedling morphological characteristics within the range of those measured in this study may not affect growth and that stocktype designation along may not be adequate for predicting field performance. West. J. Appl. For. 4(1):21-24, January 1989.


Sign in / Sign up

Export Citation Format

Share Document