Electronic Mayonnaise: Uniting the Sciences of “Hard” and “Soft” Matter

MRS Bulletin ◽  
2005 ◽  
Vol 30 (6) ◽  
pp. 433-436 ◽  
Author(s):  
J. Schmalian ◽  
P.G. Wolynes

Abstract“Soft” condensed-matter science (also known as colloid chemistry) has revealed the nearly zoological complexity of long-lived structures that can arise from the competing interactions working in concert with thermal fluctuations both near and far from equilibrium. “Hard” condensed-matter science has revealed the stark beauty of elementary excitations shimmering on a placid quantum Fermi sea. The study of strongly correlated electronic states of matter is forcing us to unify these often disparate branches of materials science. Explaining confusing phenomena occurring in high-temperature superconductors and related materials seems to require that long-lived electronic structures be generated largely on their own, but perhaps with a little help from lattice disorder.We will explain the fruitful analogy between such systems and classical colloidal systems such as mayonnaise. Ordered crystalline, striped, or checkerboard phases and striped glasses emerge as candidate forms of highly correlated matter that may explain many puzzling observations of electronic materials.

Author(s):  
José Ruiz-Franco ◽  
Emanuela Zaccarelli

In this review, we discuss recent advances in the investigation of colloidal systems interacting via a combination of short-range attraction and long-range repulsion. The prototypical examples of this phenomenology are charged colloids with depletion interactions, but the results apply, to a large extent, also to suspensions of globular proteins, clays, and, in general, to systems with competing attractive (hydrophobic) and repulsive (polar) contributions. After a brief introduction to the problem, we focus on the three disordered states that characterize these systems: equilibrium cluster phase, equilibrium gel, and Wigner glass of clusters. We provide a comparison of their static and dynamic observables, mainly by means of numerical simulations. Next, we discuss the few available studies on their viscoelastic properties and on their response to an external shear. Finally, we provide a summary of the current findings and also raise the main open questions and challenges for the future in this topic. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 12 is March 10, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Matthew J. Gilbert

AbstractWithin the broad and deep field of topological materials, there are an ever-increasing number of materials that harbor topological phases. While condensed matter physics continues to probe the exotic physical properties resulting from the existence of topological phases in new materials, there exists a suite of “well-known” topological materials in which the physical properties are well-characterized, such as Bi2Se3 and Bi2Te3. In this context, it is then appropriate to ask if the unique properties of well-explored topological materials may have a role to play in applications that form the basis of a new paradigm in information processing devices and architectures. To accomplish such a transition from physical novelty to application based material, the potential of topological materials must be disseminated beyond the reach of condensed matter to engender interest in diverse areas such as: electrical engineering, materials science, and applied physics. Accordingly, in this review, we assess the state of current electronic device applications and contemplate the future prospects of topological materials from an applied perspective. More specifically, we will review the application of topological materials to the general areas of electronic and magnetic device technologies with the goal of elucidating the potential utility of well-characterized topological materials in future information processing applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J. P. Ruf ◽  
H. Paik ◽  
N. J. Schreiber ◽  
H. P. Nair ◽  
L. Miao ◽  
...  

AbstractSuperconductivity is among the most fascinating and well-studied quantum states of matter. Despite over 100 years of research, a detailed understanding of how features of the normal-state electronic structure determine superconducting properties has remained elusive. For instance, the ability to deterministically enhance the superconducting transition temperature by design, rather than by serendipity, has been a long sought-after goal in condensed matter physics and materials science, but achieving this objective may require new tools, techniques and approaches. Here, we report the transmutation of a normal metal into a superconductor through the application of epitaxial strain. We demonstrate that synthesizing RuO2 thin films on (110)-oriented TiO2 substrates enhances the density of states near the Fermi level, which stabilizes superconductivity under strain, and suggests that a promising strategy to create new transition-metal superconductors is to apply judiciously chosen anisotropic strains that redistribute carriers within the low-energy manifold of d orbitals.


2019 ◽  
Vol 92 ◽  
pp. 01005
Author(s):  
Georgios Birmpilis ◽  
Reza Ahmadi-Naghadeh ◽  
Jelke Dijkstra

X-ray scattering is a promising non-invasive technique to study evolving nano- and micromechanics in clays. This study discusses the experimental considerations and a successful method to enable X-ray scattering to study clay samples at two extreme stages of consolidation. It is shown that the proposed sample environment comprising flat capillaries with a hydrophobic coating can be used for a wide range of voids ratios ranging from a clay suspension to consolidated clay samples, that are cut from larger specimens of reconstituted or natural clay. The initial X-ray scattering results using a laboratory instrument indicate that valuable information on, in principal evolving, clay fabric can be measured. Features such as characteristic distance between structural units and particle orientations are obtained for a slurry and a consolidated sample of kaolinite. Combined with other promising measurement techniques from Materials Science the proposed method will help advance the contemporary understanding on the behaviour of dense colloidal systems of clay, as it does not require detrimental sample preparation


2004 ◽  
Vol 861 ◽  
Author(s):  
I. R. Harrison ◽  
P. C. Ray ◽  
M. Fleck ◽  
R. H. Locklin ◽  
A. Weisner ◽  
...  

ABSTRACTIn addition to a hard-copy textbook, Power-Point presentations and videos, the authors have developed a series of Flash modules and on-line quizzing tools for use in teaching and assessing the fundamentals of Materials Science and Engineering. The original thrust was aimed at non-science majors at university, but the modules are also designed for ease of use in high school curricula. In the current paper, we present our philosophy for the presentation of materials' related subject material, using different learning objects, by describing one particular module: on electronic materials.


2018 ◽  
Vol 55 (3) ◽  
pp. 384-404 ◽  
Author(s):  
Devon E. Hinton ◽  
Amie Alley Pollack ◽  
Bahr Weiss ◽  
Lam T. Trung

The present study investigated what complaints are prominent in psychologically distressed Vietnamese in Vietnam beyond standard symptoms assessed by Western diagnostic instruments for anxiety and depression. To form the initial Vietnamese Symptom and Cultural Syndrome Addendum (VN SSA), we reviewed the literature, consulted experts, and conducted focus groups. The preliminary VN SSA was then used in a general survey (N = 1004) of five provinces in Vietnam. We found that the VN SSA items were highly and significantly correlated with a measure of anxious-depressive psychopathology (a composite measure of the General Anxiety Disorder-7; Posttraumatic Diagnostic Scale; and Patient Health Questionnaire-9). The VN SSA item most highly correlated to anxious-depressive psychopathology was “thinking a lot” ( r = .54), reported by 15.8% of the sample. Many other symptoms in the addendum also were prominent, such as orthostatic dizziness (i.e., dizziness upon standing up; r = .41), reported by 22.9% of the sample. By way of comparison, somatic complaints more typically assessed to profile Western anxious-depressive distress, such as palpitations, were less prominent, as evidenced by being less strongly correlated to Western psychiatric symptoms and being less frequent (e.g., palpitations: r = .31, 7.1% of the sample). Study results suggest that to avoid category truncation when profiling anxious-depressive distress among Vietnamese that items other than those in standard psychopathology measures should also be assessed.


2006 ◽  
Vol 112 ◽  
pp. 39-60 ◽  
Author(s):  
A. Szytuła

The work is a review paper concerning application of neutron diffraction methods for condensed matter investigations and for characterizing modern materials, namely for crystal and magnetic structures determination, small-angle scattering, investigations of chemical reactions and some practical applications. It addresses briefly a few of more prominent techniques that are important for materials scientists. In the first part of the work information on the methods and ways of interpretation of obtained results is given. Then the results for some chosen compounds are presented.


2014 ◽  
Vol 2 (24) ◽  
pp. 4710-4726 ◽  
Author(s):  
Shuang Tang ◽  
Mildred S. Dresselhaus

Bismuth antimony (Bi1−xSbx) is one of the most important materials systems for fundamental materials science, condensed matter physics, low temperature thermoelectrics, infrared applications, and beyond.


Author(s):  
Qian Zheng ◽  
Weikai Wu ◽  
Hanting Pan ◽  
Niloy Mitra ◽  
Daniel Cohen-Or ◽  
...  

AbstractHumans regularly interact with their surrounding objects. Such interactions often result in strongly correlated motions between humans and the interacting objects. We thus ask: “Is it possible to infer object properties from skeletal motion alone, even without seeing the interacting object itself?” In this paper, we present a fine-grained action recognition method that learns to infer such latent object properties from human interaction motion alone. This inference allows us to disentangle the motion from the object property and transfer object properties to a given motion. We collected a large number of videos and 3D skeletal motions of performing actors using an inertial motion capture device. We analyzed similar actions and learned subtle differences between them to reveal latent properties of the interacting objects. In particular, we learned to identify the interacting object, by estimating its weight, or its spillability. Our results clearly demonstrate that motions and interacting objects are highly correlated and that related object latent properties can be inferred from 3D skeleton sequences alone, leading to new synthesis possibilities for motions involving human interaction. Our dataset is available at http://vcc.szu.edu.cn/research/2020/IT.html.


Sign in / Sign up

Export Citation Format

Share Document