Design of Heterostructures for High Efficiency Thermionic Emission

2005 ◽  
Vol 886 ◽  
Author(s):  
Zhixi Bian ◽  
Ali Shakouri

ABSTRACTWe use two heterostructure designs to improve the energy conversion efficiency of solid-state thermionic devices. The first method is to use a non-planar heterostructure with roughness in order of electron mean free path. This has some combined benefits of increased effective interface area, and reduced total internal reflection for the electron trajectories arriving at the interface. Monte Carlo simulations of various geometries show that the electrical conductivity and thermoelectric figure of merit can be improved for non-planar barrier compared to the planar counterpart. The second method is to use planar high barrier heterostructures with different effective masses for charge carriers in emitter and barrier regions. When an electron passes from a lower effective mass emitter and arrives at a barrier with higher effective mass, since both the lateral momentum and total energy are conserved, part of the lateral energy is coupled to the vertical direction and the electron gains momentum in the direction perpendicular to the interface to enter the barrier region. For high potential barriers, the improvement of thermionic current is about the same as the ratio of the effective masses of the two materials, which can be a factor of 5-10 for typical heterostructure material systems.

2000 ◽  
Author(s):  
Taofang Zeng ◽  
Gang Chen

Abstract When electrons sweep through a double-heterojunction structure, there exist thermionic effects at the junctions and thermoelectric effects in the film. While both thermoelectric and thermionic effects have been studied for refrigeration and power generation applications separately, their interplay in heterostructures is not understood. This paper establishes a unified model including both thermionic and thermoelectric processes based on the Boltzmann transport equation for electrons, and the nonequilibrium interaction between electrons and phonons. Approximate solutions are obtained, leading to the electron temperature and Fermi level distributions inside heterostructures and discontinuities at the interfaces as a consequence of the highly nonequilibrium transport when the film thickness is much smaller than the electron mean free path. It is found that when the film thickness is smaller than the mean free path of electrons, the transport of electrons is controlled by thermionic emission. The coexistence of thermoelectric and thermionic effects may increase the power factor when the electron mean free path is comparable to the film thickness.


2014 ◽  
Vol 29 (21) ◽  
pp. 1444010
Author(s):  
Bruce H. J. McKellar ◽  
T. J. Goldman ◽  
G. J. Stephenson

If fermions interact with a scalar field, and there are many fermions present the scalar field may develop an expectation value and generate an effective mass for the fermions. This can lead to the formation of fermion clusters, which could be relevant for neutrino astrophysics and for dark matter astrophysics. Because this system may exhibit negative pressure, it also leads to a model of dark energy.


Author(s):  
Song Gao ◽  
Tonggui He ◽  
Qihan Li ◽  
Yingli Sun ◽  
Jicai Liang

The problem of springback is one of the most significant factors affecting the forming accuracy for aluminum 3D stretch-bending parts. In order to achieve high-efficiency and high-quality forming of such kind of structural components, the springback behaviors of the AA6082 aluminum profiles are investigated based on the flexible multi-points 3D stretch-bending process (3D FSB). Firstly, a finite element simulation model for the 3D FSB process was developed to analyze the forming procedure and the springback procedure. The forming experiments were carried out for the rectangle-section profile to verify the effectiveness of the simulation model. Secondly, the influence of tension on springback was studied, which include the pre-stretching and the post-stretching. Furthermore, the influences of the bending radius and bending sequence are revealed. The results show that: (1) The numerical model can be used to evaluate the effects of bending radius and process parameters on springback in the 3D FSB process effectively. (2) The pre-stretching has little effect on the horizontal springback reduction, but it plays a prominent role in reducing the springback in the vertical direction. (3) The increase of bending deformation in any direction will lead to an increase of springback in its direction and reduce the springback in the other direction. Besides, it reduces the relative error in both directions simultaneously. This research established a foundation to achieve the precise forming of the 3D stretch-bending parts with closed symmetrical cross-section.


2015 ◽  
Vol 29 (29) ◽  
pp. 1550206
Author(s):  
A. I. Agafonov

In this paper, using the Boltzmann transport equation, we study the zero temperature resistance of perfect metallic crystals of a finite thickness d along which a weak constant electric field E is applied. This resistance, hereinafter referred to as the phonon residual resistance, is caused by the inelastic scattering of electrons heated by the electric field, with emission of long-wave acoustic phonons and is proportional to [Formula: see text]. Consideration is carried out for Cu, Ag and Au perfect crystals with the thickness of about 1 cm, in the fields of the order of 1 mV/cm. Following the Matthiessen rule, the resistance of the pure crystals, the thicknesses of which are much larger than the electron mean free path is represented as the sum of both the impurity and phonon residual resistances. The condition on the thickness and field is found at which the low-temperature resistance of pure crystals does not depend on their purity and is determined by the phonon residual resistivity of the ideal crystals. The calculations are performed for Cu with a purity of at least 99.9999%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinichiro Hatta ◽  
Ko Obayashi ◽  
Hiroshi Okuyama ◽  
Tetsuya Aruga

AbstractWhile the van der Waals (vdW) interface in layered materials hinders the transport of charge carriers in the vertical direction, it serves a good horizontal conduction path. We have investigated electrical conduction of few quintuple-layer (QL) $$\hbox {Bi}_2\hbox {Te}_3$$ Bi 2 Te 3 films by in situ four-point probe conductivity measurement. The impact of the vdW (Te–Te) interface appeared as a large conductivity increase with increasing thickness from 1 to 2 QL. Angle-resolved photoelectron spectroscopy and first-principles calculations reveal the confinement of bulk-like conduction band (CB) state into the vdW interface. Our analysis based on the Boltzmann equation showed that the conduction of the CB has a long mean free path compared to the surface-state conduction. This is mainly attributed to the spatial separation of the CB electrons and the donor defects located at the Bi sites.


Author(s):  
Issei Suzuki ◽  
Zexin Lin ◽  
Sakiko Kawanishi ◽  
Kiyohisa Tanaka ◽  
Yoshitaro Nose ◽  
...  

Valence band dispersions of single-crystalline SnS1-xSex solid solutions were observed by angle-resolved photoemission spectroscopy (ARPES). The hole effective masses, crucial factors in determining thermoelectric properties, were directly evaluated. They decrease...


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
N. N. Kovaleva ◽  
F. V. Kusmartsev ◽  
A. B. Mekhiya ◽  
I. N. Trunkin ◽  
D. Chvostova ◽  
...  

AbstractLocalisation phenomena in highly disordered metals close to the extreme conditions determined by the Mott-Ioffe-Regel (MIR) limit when the electron mean free path is approximately equal to the interatomic distance is a challenging problem. Here, to shed light on these localisation phenomena, we studied the dc transport and optical conductivity properties of nanoscaled multilayered films composed of disordered metallic Ta and magnetic FeNi nanoisland layers, where ferromagnetic FeNi nanoislands have giant magnetic moments of 10$$^3$$ 3 –10$$^5$$ 5 Bohr magnetons ($$\mu _{\mathrm{B}}$$ μ B ). In these multilayered structures, FeNi nanoisland giant magnetic moments are interacting due to the indirect exchange forces acting via the Ta electron subsystem. We discovered that the localisation phenomena in the disordered Ta layer lead to a decrease in the Drude contribution of free charge carriers and the appearance of the low-energy electronic excitations in the 1–2 eV spectral range characteristic of electronic correlations, which may accompany the formation of electronic inhomogeneities. From the consistent results of the dc transport and optical studies we found that with an increase in the FeNi layer thickness across the percolation threshold evolution from the superferromagnetic to ferromagnetic behaviour within the FeNi layer leads to the delocalisation of Ta electrons from the associated localised electronic states. On the contrary, we discovered that when the FeNi layer is discontinuous and represented by randomly distributed superparamagnetic FeNi nanoislands, the Ta layer normalized dc conductivity falls down below the MIR limit by about 60%. The discovered effect leading to the dc conductivity fall below the MIR limit can be associated with non-ergodicity and purely quantum (many-body) localisation phenomena, which need to be challenged further.


Sign in / Sign up

Export Citation Format

Share Document