Lightguide Technology Review and Status

1983 ◽  
Vol 24 ◽  
Author(s):  
M. A. Safi

Remarkable progress has been made in the lightguide technology over the past ten years. The realization of low loss optical fibers approaching intrinsic material limit and long life semiconductor lasers has stimulated rapid deployment of lightwave communication systems. Within the past five years the world wide fiber production capacity has grown from a few thousand to over one million kilometers per year. The impetus for this phenomenal growth can also be traced to recent advances in computer technology allowing low cost processing and storage of a great deal of complex information. This combination of information processing and transmission technologies is bringing a host of new services such as voice, data and visual communications, CATV, videotex and facsimile transmission, over the same network. One could therefore expect an accelerating growth in deployment of lightwave communication systems.

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2776
Author(s):  
José A. Borda-Hernández ◽  
Claudia M. Serpa-Imbett ◽  
Hugo E. Hernandez Figueroa

This research introduces a numerical design of an air-core vortex polymer optical fiber in cyclic transparent optical polymer (CYTOP) that propagates 32 orbital angular momentum (OAM) modes, i.e., it may support up to 64 stable OAM-states considering left- and right-handed circular polarizations. This fiber seeks to be an alternative to increase the capacity of short-range optical communication systems multiplexed by modes, in agreement with the high demand of low-cost, insensitive-to-bending and easy-to-handle fibers similar to others optical fibers fabricated in polymers. This novel fiber possesses unique characteristics: a diameter of 50 µm that would allow a high mechanical compatibility with commercially available polymer optical fibers, a difference of effective index between neighbor OAM modes of around 10−4 over a bandwidth from 1 to 1.6 µm, propagation losses of approximately 15 × 10−3 dB/m for all OAM modes, and a very low dispersion for OAM higher order modes (±l = 16) of up to +2.5 ps/km-nm compared with OAM lower order modes at a telecom wavelength of 1.3 µm, in which the CYTOP exhibits a minimal attenuation. The spectra of mutual coupling coefficients between modes are computed considering small bends of up to 3 cm of radius and slight ellipticity in the ring of up to 5%. Results show lower-charge weights for higher order OAM modes.


Photonics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 43
Author(s):  
Mónica Far Brusatori ◽  
Nicolas Volet

To increase the spectral efficiency of coherent communication systems, lasers with ever-narrower linewidths are required as they enable higher-order modulation formats with lower bit-error rates. In particular, semiconductor lasers are a key component due to their compactness, low power consumption, and potential for mass production. In field-testing scenarios their output is coupled to a fiber, making them susceptible to external optical feedback (EOF). This has a detrimental effect on its stability, thus it is traditionally countered by employing, for example, optical isolators and angled output waveguides. In this work, EOF is explored in a novel way with the aim to reduce and stabilize the laser linewidth. EOF has been traditionally studied in the case where it is applied to only one side of the laser cavity. In contrast, this work gives a generalization to the case of feedback on both sides. It is implemented using photonic components available via generic foundry platforms, thus creating a path towards devices with high technology-readiness level. Numerical results shows an improvement in performance of the double-feedback case with respect to the single-feedback case. In particularly, by appropriately selecting the phase of the feedback from both sides, a broad stability regime is discovered. This work paves the way towards low-cost, integrated and stable narrow-linewidth integrated lasers.


2014 ◽  
Vol 2014 (DPC) ◽  
pp. 002057-002086 ◽  
Author(s):  
Yann Lamy ◽  
Haykel Ben Jamaa ◽  
Hughes Metras ◽  
Stéphane Bernabé ◽  
Sylvie Menezo ◽  
...  

The large internet companies' investments indicate an ongoing increase of data-based business volume through the next decades with the rise of the internet of things and the continuous growth of communication and data facilities. The two-figure yearly growth rate of exchanged data volume within data centers is challenging the actual short distance communication paradigms. With datacenter architectures getting larger and “flatter”, the availability of high bandwidth, low power and low cost optical links ranging from less than 1 meter to 1 kilometer is a key issue. It is therefore expected that today's 10 Gb/s transceiver data rate soon increase to 28Gb/s, 40 Gb/s and beyond. For such a channel bandwidth, the copper-based wires are no longer suitable in terms of cost, power and bandwidth density. Optical interconnects are expected to replace copper for short distances below 500 m and down to 1 m within servers and between servers of the same data center. They exhibit much higher scalability and flexibility in terms of bandwidth, reach and lower energy consumption down to 1 pJ/b and below. The integration of optical transceivers close to the computational logic is therefore becoming more and more attractive. The enabling technology for optical interconnect is silicon photonics which is maturing and leveraging the well-established knowledge coming from silicon technology. We today have a complete set of silicon photonics technology modules that cover passive components including multiplexers/demultiplexers, coupling functions, photodetectors, modulators and integrated laser sources. Given the constraints coming from the supply chain, we consider a heterogeneous integration of the photonics (PIC) and the electrical integrated circuits (EIC) within a single package, differentiating from a co-integration of both of them on a single die demonstrated in the past, which is not a viable nor scalable option from the economical point of view. Thereby we leverage our expertise in the 3D integration field, and we use a full set of mature technology modules including through-silicon vias (TSV), wafer thinning and micro-bumping. These modules have only been used in the past within electrical circuits, but their implantation in photonics chips has no showstoppers. The 3D integration enables a stacking of the electrical drivers in the EIC die on top of the photodiodes and modulators in the PIC die. The small micro-bump size reduces the parasitic capacitances and enables an optimized electro-optical co-design. The TSV enable the connection of the stack with the rest of the package and to the second-level interconnect with low inductive losses, thus boosting the system performance. The advanced 3D packaging technique also enables the alignment and attachment of the optical fibers using silicon micro-ferrules. Today's active alignment techniques for optical coupling are time-consuming and expensive, and not compatible with usual micro-electronics techniques. The ongoing development of silicon micro-ferrules with mechanical micro-bumps enables a compatible assembly of the optical plugs with the remaining system and a quick assembly process with standard pick-and-place equipment. The paper will introduce today's system demand in the data base market and its translation into technology requirements. It will then survey our silicon photonics technology modules and actual demonstrations. We will then introduce the packaging constraints and the impact of 3D integration on the system assembly. Finally, we will present our advances in terms of packaging of optical micro-connectors.


2019 ◽  
Vol 13 (1-2) ◽  
pp. 95-115
Author(s):  
Brandon Plewe

Historical place databases can be an invaluable tool for capturing the rich meaning of past places. However, this richness presents obstacles to success: the daunting need to simultaneously represent complex information such as temporal change, uncertainty, relationships, and thorough sourcing has been an obstacle to historical GIS in the past. The Qualified Assertion Model developed in this paper can represent a variety of historical complexities using a single, simple, flexible data model based on a) documenting assertions of the past world rather than claiming to know the exact truth, and b) qualifying the scope, provenance, quality, and syntactics of those assertions. This model was successfully implemented in a production-strength historical gazetteer of religious congregations, demonstrating its effectiveness and some challenges.


2017 ◽  
Vol 26 (50) ◽  
pp. 115
Author(s):  
Marcelo Da Silva Leite ◽  
Celeste Gaia

Over the past decade due the expansion of globalization there has been an increasing emphasis on internationalization among faculty, administration and accrediting agencies in the Higher Education.  Although to promote internationalization in the Higher Education, costs are a big challenge, one way to have the international actions with low cost, it is seeking for grants from different governmental agencies and foundations.The Fulbright Scholar program provides a long-standing and externally-funded means for internationalizing college and university curriculum. This article is going to share the perspective   of a Brazilian Fulbright Scholar at an American college and the institution perspective of the Fulbright scholar participation at the College.


1987 ◽  
Vol 19 (5-6) ◽  
pp. 701-710 ◽  
Author(s):  
B. L. Reidy ◽  
G. W. Samson

A low-cost wastewater disposal system was commissioned in 1959 to treat domestic and industrial wastewaters generated in the Latrobe River valley in the province of Gippsland, within the State of Victoria, Australia (Figure 1). The Latrobe Valley is the centre for large-scale generation of electricity and for the production of pulp and paper. In addition other industries have utilized the brown coal resource of the region e.g. gasification process and char production. Consequently, industrial wastewaters have been dominant in the disposal system for the past twenty-five years. The mixed industrial-domestic wastewaters were to be transported some eighty kilometres to be treated and disposed of by irrigation to land. Several important lessons have been learnt during twenty-five years of operating this system. Firstly the composition of the mixed waste stream has varied significantly with the passage of time and the development of the industrial base in the Valley, so that what was appropriate treatment in 1959 is not necessarily acceptable in 1985. Secondly the magnitude of adverse environmental impacts engendered by this low-cost disposal procedure was not imagined when the proposal was implemented. As a consequence, clean-up procedures which could remedy the adverse effects of twenty-five years of impact are likely to be costly. The question then may be asked - when the total costs including rehabilitation are considered, is there really a low-cost solution for environmentally safe disposal of complex wastewater streams?


1943 ◽  
Vol 3 (S1) ◽  
pp. 1-8
Author(s):  
Curtis P. Nettels

One influence of war has repeatedly asserted itself in the past—an effect on the costs of production and on the competitive position of the industries and firms of victorious or neutral nations. This subject needs more study, but certain facts suggest a hypothesis, of three parts. First: war expands some industries or concerns, increases their efficiency, enables them to operate, at the end of the struggle, on a comparatively low-cost basis, intensifies their competitive advantages, and improves their position in relation to foreign competitors. Second: war—for the duration—bolsters up some high-cost units by enabling them to sell at a profit all they can produce. The end of the war places such high-cost units at a disadvantage in the process of absorbing the shocks of the transition to a peacetime economy. Third: the history of postwar periods usually exhibits a sharp contest between such low-cost and high-cost enterprises. While “low cost” and “high cost” may refer to the relative positions of units within the same country, in most of this discussion, the terms will be applied to the producers of one country (either victor or neutral) to mean that their costs are low or high in comparison with those of their foreign competitors.


AJIL Unbound ◽  
2021 ◽  
Vol 115 ◽  
pp. 263-267
Author(s):  
Doron Teichman ◽  
Eyal Zamir

The use of nudges—“low-cost, choice-preserving, behaviorally informed approaches to regulatory problems”—has become quite popular at the national level in the past decade or so. Examples include changing the default concerning employees’ saving for retirement in a bid to encourage such saving; altering the default about consent to posthumous organ donation to increase the supply of organs for transplantation; and informing people about other people's energy consumption to spur them to reduce theirs. Nudges are therefore used to promote the welfare of the people being nudged, and of society at large. However, the use of nudges has sparked a lively normative debate. When turning to the international arena, new arguments for and against nudges can be raised. This essay focuses on the normative aspects of using nudges in the international arena.


Author(s):  
Liping Yao ◽  
Danlei Zhu ◽  
Hailiang Liao ◽  
Sheik Haseena ◽  
Mahesh kumar Ravva ◽  
...  

Due to their advantages of low-cost, light-weight, and mechanical flexibility, much attention has been focused on pi-conjugated organic semiconductors. In the past decade, although many materials with high performance has...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Istvan Grexa ◽  
Akos Diosdi ◽  
Maria Harmati ◽  
Andras Kriston ◽  
Nikita Moshkov ◽  
...  

AbstractRecent statistics report that more than 3.7 million new cases of cancer occur in Europe yearly, and the disease accounts for approximately 20% of all deaths. High-throughput screening of cancer cell cultures has dominated the search for novel, effective anticancer therapies in the past decades. Recently, functional assays with patient-derived ex vivo 3D cell culture have gained importance for drug discovery and precision medicine. We recently evaluated the major advancements and needs for the 3D cell culture screening, and concluded that strictly standardized and robust sample preparation is the most desired development. Here we propose an artificial intelligence-guided low-cost 3D cell culture delivery system. It consists of a light microscope, a micromanipulator, a syringe pump, and a controller computer. The system performs morphology-based feature analysis on spheroids and can select uniform sized or shaped spheroids to transfer them between various sample holders. It can select the samples from standard sample holders, including Petri dishes and microwell plates, and then transfer them to a variety of holders up to 384 well plates. The device performs reliable semi- and fully automated spheroid transfer. This results in highly controlled experimental conditions and eliminates non-trivial side effects of sample variability that is a key aspect towards next-generation precision medicine.


Sign in / Sign up

Export Citation Format

Share Document