The Fracture Toughness of Polysilicon Microdevices

1998 ◽  
Vol 518 ◽  
Author(s):  
R. Ballarini ◽  
R.L. Mullen ◽  
H. Kahn ◽  
A.H. Heuer

AbstractThe development of polysilicon fracture mechanics specimens with characteristic dimensions comparable to those of typical microelectromechanical systems (MEMS) devices is presented. The notched cantilever specimens are fully integrated with a simultaneously microfabricated electrostatic actuator, which allows on-chip testing of the specimens without the need of an external loading device, and without any possible influences from external sources. Under monotonic loading, the average maximum tensile stress (strength) and average nominal fracture toughness were measured as 4.2 GPa and 3.5 MPa-m½ for boron-doped specimens, and 5.0 GPa and 4.0 MPa-m½ for undoped specimens. An average modulus of rupture of 3.3 GPa and average nominal toughness of 2.7 MPa-m½ were measured for specimens cracked under cyclic resonance loading. The differences between the monotonic loading and cyclic loading data are attributed to fatigue initiation of a sharp crack from the 1 ýtm radius notch. The experimental data is consistent with a critical flaw size in the fabricated devices, a, that is related to the fracture toughness Klc by Klc/a1/2=4600 MPa.

1999 ◽  
Vol 605 ◽  
Author(s):  
H. Kahn ◽  
N. Tayebi ◽  
R. Ballarini ◽  
R.L. Mullen ◽  
A.H. Heuer

AbstractDetermination of the mechanical properties of MEMS (microelectromechanical systems) materials is necessary for accurate device design and reliability prediction. This is most unambiguously performed using MEMS-fabricated test specimens and MEMS loading devices. We describe here a wafer-level technique for measuring the bend strength, fracture toughness, and tensile strength of MEMS materials. The bend strengths of surface-micromachined polysilicon, amorphous silicon, and polycrystalline 3C SiC are 5.1±1.0, 10.1±2.0, and 9.0±1.0 GPa, respectively. The fracture toughness of undoped and P-doped polysilicon is 1.2±0.2 MPa√m, and the tensile strength of polycrystalline 3C SiC is 3.2±1.2 GPa. These results include the first report of the mechanical strength of micromachined polycrystalline 3C SiC.


MRS Bulletin ◽  
2001 ◽  
Vol 26 (4) ◽  
pp. 300-301 ◽  
Author(s):  
H. Kahn ◽  
A.H. Heuer ◽  
R. Ballarini

The field of microelectromechanical systems (MEMS) involves the interaction of the physical environment with electrical signals through the use of microbatchfabricated devices. MEMS is a growing technology, and commercial MEMS products are becoming commonplace.


2005 ◽  
Vol 297-300 ◽  
pp. 2416-2422 ◽  
Author(s):  
T.P. Halford ◽  
D. Rudinal ◽  
Kazuki Takashima ◽  
Yakichi Higo

The effective fracture toughness testing of materials intended for application in MicroElectroMechanical Systems (MEMS) devices is required in order to improve understanding of how they may be expected to perform upon the micro scale. γ-TiAl based materials are being considered for application in MEMS devices required to operate at elevated temperatures. The effect of different preparation methods upon resulting fracture toughness and development of testing methods for these devices is therefore of importance. Micro-sized cantilevers of the γ-TiAl alloy “Alloy 7” (Ti-46Al-5Nb-1W) were therefore prepared using either mechanical or chemical final stage polishing and subsequently used to evaluate fracture toughness. The effectiveness of the evaluation of micro-sized samples of γ-TiAl in this manner is considered, as well as the effects of the different processing methods and variations in properties according to lamellar orientation.


1997 ◽  
Vol 12 (4) ◽  
pp. 915-922 ◽  
Author(s):  
R. Ballarini ◽  
R. L. Mullen ◽  
Y. Yin ◽  
H. Kahn ◽  
S. Stemmer ◽  
...  

Polysilicon microfracture specimens were fabricated using surface micromachining techniques identical to those used to fabricate microelectromechanical systems (MEMS) devices. The nominal critical J-integral (the critical energy release rate) for crack initiation, Jc, was determined in specimens whose characteristic dimensions were of the same order of magnitude as the grain size of the polysilicon. Jc values ranged from 16 to 62 N/m, approximately a factor of four larger than Jc values reported for single crystal silicon.


2000 ◽  
Vol 657 ◽  
Author(s):  
H. Kahn ◽  
R. Ballarini ◽  
A.H. Heuer

ABSTRACTThe mechanical properties of micromachined polysilicon are of great interest to designers of microelectromechanical systems (MEMS) devices. Numerous investigations have been carried out to determine the strength of MEMS-fabricated polysilicon structures, and the experimental results vary widely, depending on the experimental techniques, specimen geometries, and processing conditions. In order to determine whether these variations are inherent to all mechanical properties of MEMS materials, the fracture toughness, Kcrit, of micromachined polysilicon has been investigated, using a wide range of material microstructures (microstructure is used here in the Materials Science sense to mean the grain structure visible in a microscope, and not in the MEMS sense to mean small structures). Since fracture toughness is a fundamental materials property, whether or not it varies with microstructure and processing is an interesting question. We have confirmed that Kcrit is not a microstructure-sensitive property, using surface-micromachined specimens with sharp pre-cracks which are integrated with electrostatic actuators. The measured Kcrit is 1.0±0.1 MPa √m for a wide range of miscrostructures.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Rafel Perelló-Roig ◽  
Jaume Verd ◽  
Sebastià Bota ◽  
Jaume Segura

CMOS-MEMS resonators have become a promising solution thanks to their miniaturization and on-chip integration capabilities. However, using a CMOS technology to fabricate microelectromechanical system (MEMS) devices limits the electromechanical performance otherwise achieved by specific technologies, requiring a challenging readout circuitry. This paper presents a transimpedance amplifier (TIA) fabricated using a commercial 0.35-µm CMOS technology specifically oriented to drive and sense monolithically integrated CMOS-MEMS resonators up to 50 MHz with a tunable transimpedance gain ranging from 112 dB to 121 dB. The output voltage noise is as low as 225 nV/Hz1/2—input-referred current noise of 192 fA/Hz1/2—at 10 MHz, and the power consumption is kept below 1-mW. In addition, the TIA amplifier exhibits an open-loop gain independent of the parasitic input capacitance—mostly associated with the MEMS layout—representing an advantage in MEMS testing compared to other alternatives such as Pierce oscillator schemes. The work presented includes the characterization of three types of MEMS resonators that have been fabricated and experimentally characterized both in open-loop and self-sustained configurations using the integrated TIA amplifier. The experimental characterization includes an accurate extraction of the electromechanical parameters for the three fabricated structures that enables an accurate MEMS-CMOS circuitry co-design.


Holzforschung ◽  
2003 ◽  
Vol 57 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Y. Liu ◽  
A.W.C. Lee

Summary This study was conducted to explore basic physical and mechanical properties of parallel strand lumber (PSL) made exclusively from southern pine and yellow-poplar, respectively, and to examine their relationships using statistical analysis. Small specimens were prepared from commercial southern pine PSL and yellow-poplar PSL billets and tested for specific gravity, moisture content, dimensional stability, bending properties, shear strength and compressive strength. Results indicate average specific gravity of southern pine PSL is higher than that of yellow-poplar PSL, while their average moisture content and dimensional stability are very similar. Southern pine PSL has higher average modulus of elasticity but lower average modulus of rupture than yellow-poplar PSL. While average longitudinal shear strength does not exhibit differences between southern pine PSL and yellow-poplar PSL, average compressive strength of southern pine PSL is higher than that of yellow-poplar PSL. There are positive correlations among modulus of elasticity, modulus of rupture and specific gravity. PSL improves some properties of solid wood from which PSL is made.


2010 ◽  
Vol 1 ◽  
pp. 163-171 ◽  
Author(s):  
W Merlijn van Spengen ◽  
Viviane Turq ◽  
Joost W M Frenken

We have replaced the periodic Prandtl–Tomlinson model with an atomic-scale friction model with a random roughness term describing the surface roughness of micro-electromechanical systems (MEMS) devices with sliding surfaces. This new model is shown to exhibit the same features as previously reported experimental MEMS friction loop data. The correlation function of the surface roughness is shown to play a critical role in the modelling. It is experimentally obtained by probing the sidewall surfaces of a MEMS device flipped upright in on-chip hinges with an AFM (atomic force microscope). The addition of a modulation term to the model allows us to also simulate the effect of vibration-induced friction reduction (normal-force modulation), as a function of both vibration amplitude and frequency. The results obtained agree very well with measurement data reported previously.


2020 ◽  
Author(s):  
Jacyeude De Morais Passos Araújo Segundo ◽  
Carlos Vinicius Alves Coimbra ◽  
Mauro Sergio Silva Pinto ◽  
Leonardo Ramos Rodrigues

Ao passo que a Indústria 4.0 avança, conjuntos de ações de automação e controle vem sendo implementados. Dentro deste contexto o sensoriamento de motores de indução trifásicos vem se tornando remoto e conectado à internet. A manutenção preventiva pode então utilizar esse grande volume de dados para aumentar sua capacidade de detecção de falhas em relação aos métodos clássicos de classificação. Este trabalho propõe o desenvolvimento de um identificador de diferentes condições, entre normalidade, desbalanceamento no rotor, alimentação por duas fases e desníveis na base de um motor trifásico de indução W22 IR3, com base em dados de análises vibracionais e de correntes elétricas. Utilizando um sistema para aquisição de dados que consiste em um acelerômetro MEMS (Microelectromechanical Systems) e um transformador de corrente não invasivo SCT-013, controlados por um SoC (System on Chip). A análise dos dados foi realizada na IBM Cloud através de Watson Studio e SPSS Modeler para aplicação de um modelo estatístico Support Vectot Machine (SVM) que foi treinado e testado usando diferentes funções kernel. Observou-se que a oferta da escolha das funções kernel condicionam os dados a diferentes performances de processamento. A utilização dos algoritmos de classificação SVM, provou ser bastante robusto e eficiente. Mostrando que a capacidade de generalização do classificador foi garantida.


Simple criteria for brittle and ductile crack extension are applied to the stress and strain fields adjacent to the tip of a crack. They are applied at a specified distance from the crack tip, which should be related to the material’s microstructure. The basic approach is to examine each criterion and find which is satisfied first, as the external loading is increased; the predicted fracture is classified either brittle or ductile accordingly. The stress and strain fields depend upon temperature, principally through the variation of flow stress σ 0 with temperature and, to avoid excessive computation, a constitutive relation is constructed which allows stresses and strains both to be scaled in terms of σ 0 , so that major computations need to be done only at a reference temperature, for a range of applied loads. For any given crack configuration, the result of the calculation is a theoretical prediction of fracture toughness as a function of temperature. At low temperatures, the fracture toughness is low and rises rapidly with temperature, corresponding to satisfaction of the criterion for brittle failure. Above a transition temperature, T T , the ductile criterion is satisfied first, and the toughness variation thereafter falls slowly as temperature increases, corresponding to failure ‘on the upper shelf’. Both the absolute level of the toughness at a given temperature and the transition temperature T T are sensitive to crack size as well as specimen geometry. Although this is self-evident for cracks of microstructural dimensions, the striking feature of this work is the prediction that substantial sensitivity to size and geometry may well be displayed for cracks as large as 1 cm in materials of significance for major engineering structures. Generally, toughness increases and transition temperature decreases as crack size decreases, but these beneficial effects can be nullified by stress triaxiality. Detailed calculations are performed for a buried crack and an edge crack under conditions of plane strain and for a penny-shaped crack loaded axisymmetrically. The plane strain calculations are supplemented by ‘boundary layer’ calculations, in which the effect of specimen geometry appears through a single parameter. The close agreement of the ‘boundary layer’ calculations with the full specimen calculations offers the prospect of a simple characterization of specimen geometry and loading, without the need for geometry-specific computations. The calculations that are reported are, of course, based upon a particular model, chosen in part for com­putational convenience. Thus, their status is that they display possible trends which may be considered to merit further investigation, both theoretical and experimental.


Sign in / Sign up

Export Citation Format

Share Document