The Effect of Parent Metal Properties on the Performance of Lattice Block MaterialTM

1998 ◽  
Vol 521 ◽  
Author(s):  
M. L. Renauld ◽  
A. F. Giamei ◽  
M. S. Thompson ◽  
J. Priluck

ABSTRACTLattice Block MaterialTM, or LBMTM is a unique lightweight structure consisting of repeated cells with an internal node connected to, in the most common configuration, 14 ligaments. In its metallic version, this product is available in a variety of castable metals including aluminum alloys, copper alloys, nickel alloys and steels. The relationship between LBMTM structural performance (strength and stiffness) and parent metal properties is investigated using compression tests in three primary orientations and 3-pt. bend tests. Analytical assessment of the LBMTM via finite element analysis shows reasonable agreement with experimental findings and provides predictions for LBMTM capabilities with different materials, unit cell sizes and ligament geometries.

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 881
Author(s):  
Adrian Dubicki ◽  
Izabela Zglobicka ◽  
Krzysztof J. Kurzydłowski

Numerous engineering applications require lightweight structures with excellent absorption capacity. The problem of obtaining such structures may be solved by nature and especially biological structures with such properties. The paper concerns an attempt to develop a new energy-absorbing material using a biomimetic approach. The lightweight structure investigated here is mimicking geometry of diatom shells, which are known to be optimized by nature in terms of the resistance to mechanical loading. The structures mimicking frustule of diatoms, retaining the similarity with the natural shell, were 3D printed and subjected to compression tests. As required, the bio-inspired structure deformed continuously with the increase in deformation force. Finite element analysis (FEA) was carried out to gain insight into the mechanism of damage of the samples mimicking diatoms shells. The experimental results showed a good agreement with the numerical results. The results are discussed in the context of further investigations which need to be conducted as well as possible applications in the energy absorbing structures.


2015 ◽  
Vol 661 ◽  
pp. 105-112
Author(s):  
Yeong Maw Hwang ◽  
Tso Lun Yeh

Material’s plastic deformation by hot forming processes can be used to make the materials generate dynamic recrystallization (DRX) and fine grains and accordingly products with more excellent mechanical properties, such as higher strength and larger elongation can be obtained. In this study, compression tests and water quenching are conducted to obtain the flow stress of the materials and the grain size after DRX. Through the regression analysis, prediction equations for the magnesium alloy microstructure were established. Simulations with different rolling parameters are conducted to find out the relationship between the DRX fractions or grain sizes of the rolled products and the rolling parameters. The simulation results show that rolling temperature of 400°C and thickness reduction of 50% are the optimal conditions. An average grain size of 0.204μm-0.206μm in the microstructure is obtained and the strength and formability of ZK60 magnesium alloys can be improved.


2014 ◽  
Vol 971-973 ◽  
pp. 584-587
Author(s):  
Zhi Jun Liu ◽  
Wei Gang Zheng ◽  
Xiao Le Li

By analyzing stress contours and deformation contours of the primary bracket, we can know that bracket material is more, contours proves too safe for bracket strength and stiffness. To improve the material utilization rate, topology optimization for bracket is carried by using topology module (DOE) of finite element analysis software workbench14.0. the main design parameter was set up, accordingly to accomplish analysis about the relationship between design parameter with quality. on the basis of analysis results, we improved primary structure that made the bracket quality reduced by 10% and executes verification, we obtained the reasonable structure finally.


2020 ◽  
Vol 318 ◽  
pp. 01049
Author(s):  
Michel Theodor Mansour ◽  
Konstantinos Tsongas ◽  
Dimitris Tzetzis

The aim of this paper is to design hierarchical honeycombs as well as manufacturing such structures with a commercial 3D Printer using Fused Filament Fabrication (FFF) technique. The materials under study are commercial filaments such as acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene styrene/carbon fibers (ABS/CF) and acrylonitrile butadiene styrene/carbon nanotubes (ABS/CNTs). The fabricated hierarchical honeycombs were examined by compression tests in order to evaluate the mechanical behaviour of such honeycomb 3D printed structures. The compression behaviour of the hierarchical honeycombs was assessed also with finite element analysis (FEA) and at the end there was a comparison with the experimental findings. The results reveal that the 2nd order hierarchy presented an increase both in stiffness and strength in comparison with the 0th and the 1st hierarchies which make such designs a suitable for structures require such properties. Also, the results reveal that ABS/carbon fiber constructs outperform the other materials under study.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1337-1345
Author(s):  
Chuan Zhao ◽  
Feng Sun ◽  
Junjie Jin ◽  
Mingwei Bo ◽  
Fangchao Xu ◽  
...  

This paper proposes a computation method using the equivalent magnetic circuit to analyze the driving force for the non-contact permanent magnet linear drive system. In this device, the magnetic driving force is related to the rotation angle of driving wheels. The relationship is verified by finite element analysis and measuring experiments. The result of finite element simulation is in good agreement with the model established by the equivalent magnetic circuit. Then experiments of displacement control are carried out to test the dynamic characteristic of this system. The controller of the system adopts the combination control of displacement and angle. The results indicate that the system has good performance in steady-state error and response speed, while the maximum overshoot needs to be reduced.


1997 ◽  
Vol 24 ◽  
pp. 181-185 ◽  
Author(s):  
Katsuhisa Kawashima ◽  
Tomomi Yamada

The densification of water-saturated firn, which had formed just above the firn-ice transition in the wet-snow zone of temperate glaciers, was investigated by compression tests under pressures ranging from 0.036 to 0.173 MPa, with special reference to the relationship between densification rate, time and pressure. At each test, the logarithm of the densification rate was proportional to the logarithm of the time, and its proportionality constant increased exponentially with increasing pressure. The time necessary for ice formation in the firn aquifer was calculated using the empirical formula obtained from the tests. Consequently, the necessary time decreased exponentially as the pressure increased, which shows that the transformation from firn in ice can be completed within the period when the firn aquifer exists, if the overburden pressure acting on the water-saturated firn is above 0.12–0.14 MPa. This critical value of pressure was in good agreement with the overburden pressure obtained from depth–density curves of temperate glaciers. It was concluded that the depth of firn–ice transition was self-balanced by the overburden pressure to result in the concentration between 20 and 30 m.


2021 ◽  
Vol 9 (8) ◽  
pp. 839
Author(s):  
Tarek N. Salem ◽  
Nadia M. Elkhawas ◽  
Ahmed M. Elnady

The erosion of limestone and calcarenite ridges that existed parallel to the Mediterranean shoreline forms the calcareous sand (CS) formation at the surface layer of Egypt's northern coast. The CS is often combined with broken shells which are considered geotechnically problematic due to their possible crushability and relatively high compressibility. In this research, CS samples collected from a site along the northern coast of Egypt are studied to better understand its behavior under normal and shear stresses. Reconstituted CS specimens with different ratios of broken shells (BS) are also investigated to study the effect of BS ratios on the soil mixture strength behavior. The strength is evaluated using laboratory direct-shear and one-dimensional compression tests (oedometer test). The CS specimens are not exposed to significant crushability even under relatively high-stress levels. In addition, a 3D finite element analysis (FEA) is presented in this paper to study the degradation offshore pile capacity in CS having different percentages of BS. The stress–strain results using oedometer tests are compared with a numerical model, and it gave identical matching for most cases. The effects of pile diameter and embedment depth parameters are then studied for the case study on the northern coast. Three different mixing ratios of CS and BS have been used, CS + 10% BS, CS + 30% BS, and CS + 50% BS, which resulted in a decrease of the ultimate vertical compression pile load capacity by 8.8%, 15%, and 16%, respectively.


2020 ◽  
Vol 57 (3) ◽  
pp. 448-452 ◽  
Author(s):  
A.S. Lees ◽  
J. Clausen

Conventional methods of characterizing the mechanical properties of soil and geogrid separately are not suited to multi-axial stabilizing geogrid that depends critically on the interaction between soil particles and geogrid. This has been overcome by testing the soil and geogrid product together as one composite material in large specimen triaxial compression tests and fitting a nonlinear failure envelope to the peak failure states. As such, the performance of stabilizing, multi-axial geogrid can be characterized in a measurable way. The failure envelope was adopted in a linear elastic – perfectly plastic constitutive model and implemented into finite element analysis, incorporating a linear variation of enhanced strength with distance from the geogrid plane. This was shown to produce reasonably accurate simulations of triaxial compression tests of both stabilized and nonstabilized specimens at all the confining stresses tested with one set of input parameters for the failure envelope and its variation with distance from the geogrid plane.


2016 ◽  
Vol 35 (6) ◽  
pp. 599-605 ◽  
Author(s):  
Fuqiang Zhen ◽  
Jianlin Sun ◽  
Jian Li

AbstractThe flow behavior of 3104 aluminum alloy was investigated at temperatures ranging from 250°C to 500°C, and strain rates from 0.01 to 10 s−1 by isothermal compression tests. The true stress–strain curves were obtained from the measured load–stroke data and then modified by friction and temperature correction. The effects of temperature and strain rate on hot deformation behavior were represented by Zener–Hollomon parameter including Arrhenius term. Additionally, the influence of strain was incorporated considering the effect of strain on material constants. The derived constitution equation was applied to the finite element analysis of hot compression. The results show that the simulated force is consistent with the measured one. Consequently, the developed constitution equation is valid and feasible for numerical simulation in hot deformation process of 3104 alloy.


Author(s):  
V. Ramirez-Elias ◽  
E. Ledesma-Orozco ◽  
H. Hernandez-Moreno

This paper shows the finite element simulation of a representative specimen from the firewall section in the AEROMARMI ESTELA M1 aircraft. This specimen is manufactured in glass and carbon / epoxy laminates. The specimen is subjected to a load which direction and magnitude are determined by a previous dynamic loads study [10], taking into account the maximum load factor allowed by the FAA (Federal Aviation Administration) for utilitarian aircrafts [11]. A representative specimen is manufactured with the same features of the firewall. Meanwhile a fix is built in order to introduce the load directions on the representative specimen. The relationship between load and displacement is plotted for this representative specimen, whence the maximum displacement at the specific load is obtained, afterwards it is compared with the finite element model, which is modified in its laminate thicknesses in order to decrease the deviation error; subsequently this features could be applied to perform the whole firewall analysis in a future model [10].


Sign in / Sign up

Export Citation Format

Share Document