Redox Processes in Polynary Copper Oxides and Copper Oxide / Mesoporous Silica Composites

1998 ◽  
Vol 547 ◽  
Author(s):  
A. Reller ◽  
S. Ebbinghaus ◽  
R. Köhn ◽  
M. Fröba ◽  
U. Sazama ◽  
...  

AbstractDynamic redox processes in different complex copper oxides and oxide / mesoporous silica composites are characterized. In the spinel-type CuxMn3.xO4 the atomic and electronic structures are described with respect to the reversible process Cu2+ + Mn3+ ⇒ Cu3+ + Mn4+, the crucial dynamic equilibrium for the catalytic oxidation of CO to CO2 at ambient temperatures. A comparison with the perovskite-type LaCu1-xMnxO3-δ is presented. In the K2NiF4-type La2-xSrxCu1-yRuyO4-δ the electronic structure is characterized with respect to the equilibrium Cu2+ + Ru5+ ⇒ Cu3+ + Ru4+. Analogous redox processes are characterized in composite compounds made up of copper oxides inserted in mesoporous MCM-type silica. Due to their structural order in the nanoscopic range, the investigation of these materials required multiple, complementary characterization methods, i.e. X-ray diffractometry, thermal analysis, scanning and transmission electron microscopy, magnetic measurements, XPS, and particularly X-ray absorption spectroscopy (EXAFS / XANES) measurements.

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 244
Author(s):  
Carolina N. Keim ◽  
Jilder D. P. Serna ◽  
Daniel Acosta-Avalos ◽  
Reiner Neumann ◽  
Alex S. Silva ◽  
...  

On 5 November 2015, a large tailing deposit failed in Brazil, releasing an estimated 32.6 to 62 million m3 of iron mining tailings into the environment. Tailings from the Fundão Dam flowed down through the Gualaxo do Norte and Carmo riverbeds and floodplains and reached the Doce River. Since then, bottom sediments have become enriched in Fe(III) oxyhydroxides. Dissimilatory iron-reducing microorganisms (DIRMs) are anaerobes able to couple organic matter oxidation to Fe(III) reduction, producing CO2 and Fe(II), which can precipitate as magnetite (FeO·Fe2O3) and other Fe(II) minerals. In this work, we investigated the presence of DIRMs in affected and non-affected bottom sediments of the Gualaxo do Norte and Doce Rivers. The increase in Fe(II) concentrations in culture media over time indicated the presence of Fe(III)-reducing microorganisms in all sediments tested, which could reduce Fe(III) from both tailings and amorphous ferric oxyhydroxide. Half of our enrichment cultures converted amorphous Fe(III) oxyhydroxide into magnetite, which was characterized by X-ray diffraction, transmission electron microscopy, and magnetic measurements. The conversion of solid Fe(III) phases to soluble Fe(II) and/or magnetite is characteristic of DIRM cultures. The presence of DIRMs in the sediments of the Doce River and tributaries points to the possibility of reductive dissolution of goethite (α-FeOOH) and/or hematite (α-Fe2O3) from sediments, along with the consumption of organics, release of trace elements, and impairment of water quality.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 800
Author(s):  
Vladimír Girman ◽  
Maksym Lisnichuk ◽  
Daria Yudina ◽  
Miloš Matvija ◽  
Pavol Sovák ◽  
...  

In the present study, the effect of wet mechanical alloying (MA) on the glass-forming ability (GFA) of Co43Fe20X5.5B31.5 (X = Ta, W) alloys was studied. The structural evolution during MA was investigated using high-energy X-ray diffraction, X-ray absorption spectroscopy, high-resolution transmission electron microscopy and magnetic measurements. Pair distribution function and extended X-ray absorption fine structure spectroscopy were used to characterize local atomic structure at various stages of MA. Besides structural changes, the magnetic properties of both compositions were investigated employing a vibrating sample magnetometer and thermomagnetic measurements. It was shown that using hexane as a process control agent during wet MA resulted in the formation of fully amorphous Co-Fe-Ta-B powder material at a shorter milling time (100 h) as compared to dry MA. It has also been shown that substituting Ta with W effectively suppresses GFA. After 100 h of MA of Co-Fe-W-B mixture, a nanocomposite material consisting of amorphous and nanocrystalline bcc-W phase was synthesized.


2007 ◽  
Vol 130 ◽  
pp. 171-174 ◽  
Author(s):  
Z. Stokłosa ◽  
G. Badura ◽  
P. Kwapuliński ◽  
Józef Rasek ◽  
G. Haneczok ◽  
...  

The crystallization and optimization of magnetic properties effects in FeXSiB (X=Cu, V, Co, Zr, Nb) amorphous alloys were studied by applying X-ray diffraction methods, high resolution transmission electron microscopy (HRTEM), resistometric and magnetic measurements. The temperatures of the first and the second stage of crystallization, the 1h optimization annealing temperature and the Curie temperature were determined for different amorphous alloys. Activation energies of crystallization process were obtained by applying the Kissinger method. The influence of alloy additions on optimization effect and crystallization processes was carefully examined.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 193
Author(s):  
Kamrun Nahar Fatema ◽  
Chang-Sung Lim ◽  
Yin Liu ◽  
Kwang-Youn Cho ◽  
Chong-Hun Jung ◽  
...  

We described the novel nanocomposite of silver doped ZrO2 combined graphene-based mesoporous silica (ZrO2-Ag-G-SiO2,) in bases of low-cost and self-assembly strategy. Synthesized ZrO2-Ag-G-SiO2 were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, Nitrogen adsorption-desorption isotherms, X-ray photoelectron spectroscopy (XPS), and Diffuse Reflectance Spectroscopy (DRS). The ZrO2-Ag-G-SiO2 as an enzyme-free glucose sensor active material toward coordinate electro-oxidation of glucose was considered through cyclic voltammetry in significant electrolytes, such as phosphate buffer (PBS) at pH 7.4 and commercial urine. Utilizing ZrO2-Ag-G-SiO2, glucose detecting may well be finished with effective electrocatalytic performance toward organically important concentrations with the current reaction of 9.0 × 10−3 mAcm−2 and 0.05 mmol/L at the lowest potential of +0.2 V, thus fulfilling the elemental prerequisites for glucose detecting within the urine. Likewise, the ZrO2-Ag-G-SiO2 electrode can be worked for glucose detecting within the interferometer substances (e.g., ascorbic corrosive, lactose, fructose, and starch) in urine at proper pH conditions. Our results highlight the potential usages for qualitative and quantitative electrochemical investigation of glucose through the ZrO2-Ag-G-SiO2 sensor for glucose detecting within the urine concentration.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650039 ◽  
Author(s):  
Jingyuan Piao ◽  
Li-Ting Tseng ◽  
Kiyonori Suzuki ◽  
Jiabao Yi

Na-doped ZnO nanorods have been fabricated through a hydrothermal method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses indicate that the d spacing of ZnO increases with increasing doping concentration, suggesting the effective incorporation of dopant Na in the samples. Electron paramagnetic resonance (EPR) measurements indicate that there are shallow donors in pure ZnO samples and the shallow donors are strongly prohibited by Na doping. In addition, the resonance at g = 2.005 suggests the formation of Zn vacancies. Magnetic measurements indicate that pure ZnO is paramagnetic and Na doping leads to ferromagnetism at room temperature. Moreover, 0.5% Na-doped ZnO nanorods exhibits the largest saturation magnetization.


2001 ◽  
Vol 7 (2) ◽  
pp. 211-219 ◽  
Author(s):  
Patrick Echlin

Abstract A brief description is given of the events surrounding the development of biological X-ray microanalysis during the last 30 years, with particular emphasis on the contribution made by research workers in Cambridge, UK. There then follows a broad review of some applications of biological X-ray microanalysis. A more detailed consideration is given to the main thrust of current procedures and applications that are, for convenience, considered as four different kinds of samples. Thin frozen dried sections which are analyzed at ambient temperatures in a transmission electron microscope (TEM); semithin frozen dried sections which are analyzed at low temperature in a scanning transmission electron microscope (STEM); thick frozen hydrated sections which are analyzed at low temperature in a scanning electron microscope (SEM), and bulk samples which are analyzed at low temperature in the same type of instrument. A brief outline is given of the advantages and disadvantages of performing low-voltage, low-temperature X-ray microanalysis on frozen hydrated bulk biological material. The article concludes with a consideration of alternative approaches to in situ analysis using either high-energy beams or visible and near-visible photons.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5798
Author(s):  
Bingliang Liang ◽  
Yunlong Ai ◽  
Yiliang Wang ◽  
Changhong Liu ◽  
Sheng Ouyang ◽  
...  

High-entropy oxides (HEOs) have attracted more and more attention because of their unique structures and potential applications. In this work, (FeCoCrMnZn)3O4 HEO powders were synthesized via a facile solid-state reaction route. The confirmation of phase composition, the observation of microstructure, and the analysis of crystal structure, distribution of elements, and valences of elements were conducted by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS), respectively. Furthermore, a (FeCoCrMnZn)3O4/nickel foam ((FeCoCrMnZn)3O4/NF) electrode was prepared via a coating method, followed by the investigation of its supercapacitor performance. The results show that, after calcining (FeCoCrMnZn)3O4 powders at 900 °C for 2 h, a single spinel structure (FCC, Fd-3m, a = 0.8399 nm) was obtained with uniform distribution of Fe, Co, Cr, Mn, and Zn elements, the typical characteristic of a high-entropy oxide. In addition, the mass specific capacitance of the (FeCoCrMnZn)3O4/NF composite electrode was 340.3 F·g−1 (with 1 M KOH as the electrolyte and 1 A·g−1 current density), which indicates that the (FeCoCrMnZn)3O4 HEO can be regarded as a prospective candidate for an electrode material in the field of supercapacitor applications.


Open Physics ◽  
2010 ◽  
Vol 8 (4) ◽  
Author(s):  
Lidia Rednic ◽  
Iosif Deac ◽  
Eugen Dorolti ◽  
Marin Coldea ◽  
Vasile Rednic ◽  
...  

AbstractX-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM) and magnetic measurements as a function of applied magnetic field and temperature for In1−x MnxSb (0.05≤x≤0.2) system are reported. Magnetic measurements performed at high and small magnetic field in ZFC and FC indicate the coexistence of ferromagnetic In1−x MnxSb solid solution and two types of magnetic cluster: ferromagnetic MnSb and ferrimagnetic Mn2Sb. XPS valence band and Mn 2p core level spectra have confirmed the presence of MnSb and Mn2Sb phases. TEM images show some manganese antimonide phase microinclusions with dimension between (30–40) nm.


2014 ◽  
Vol 915-916 ◽  
pp. 933-941 ◽  
Author(s):  
Zhong Jie Zhang ◽  
Chang Yu Lu ◽  
Wei Huang ◽  
Wei Sheng Guan ◽  
Yue Xin Peng

The effective remove to tetracycline still remains a big challenge for scientists. In this work, we used a new method for preparing functional magnetic CNTS with ferrite nanoparticles. A wide range of techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and magnetic measurements were applied to characterize the obtained Fe2O3/CNTs. Moreover, we have also studied the properties of adsorbent to tetracycline. In addition, we have found that the Fe2O3/CNTs are better reusable adsorbent than other traditional adsorbents by magnetic separation recycling method.


2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Hairui Wang ◽  
Hao Chen ◽  
Zhen Xu ◽  
Sibing Wang ◽  
Baozong Li ◽  
...  

Mesoporous silica nanospheres were prepared using a chiral cationic low-molecular-weight amphiphile and organic solvents such as toluene, cyclohexane, and tetrachlorocarbon through a dual-templating approach. X-ray diffraction, nitrogen sorption, field emission scanning electron microscopy, and transmission electron microscopy techniques have been used to characterize the mesoporous silicas. The volume ratio of toluene to water plays an important role in controlling the morphologies and the pore architectures of the mesoporous silicas. It was also found that mesoporous silica nanoflakes can be prepared by adding tetrahydrofuran to the reaction mixtures.


Sign in / Sign up

Export Citation Format

Share Document