scholarly journals Substantiation of parameters for the inertial mixer in a biodiesel production reactor

2021 ◽  
Vol 5 (6 (113)) ◽  
pp. 39-45
Author(s):  
Nursultan Orynbayev ◽  
Marat Aldabergenov ◽  
Kemal Zhaхylyk ◽  
Nurlan Abdildin

This paper reports results of the theoretical and experimental studies into the processes of transesterification of oils with methyl alcohol, which determined the material balance and established the molecular weight of the components involved in the process of transesterification as input and output products. The theoretical and experimental studies were carried out to calculate the indicators of the process of transesterification of fat-containing wastes depending on a change in the reaction duration and diameter of the inertial mixer of the reactor to accelerate the process of transesterification of oils with methyl alcohol. The process of transesterification is one of the basic methods for modifying the molecular composition of fat raw materials. With transesterification, the composition of fat fatty acids does not change, their statistical redistribution occurs in a mixture of triacylglycerols, which leads to a change in the physicochemical properties of fat mixtures as a result of changes in molecular composition. Transesterification of high-melting animal and vegetable fats with methyl alcohol improves the conversion of oils for the production of biodiesel from fat-containing waste. The results of the theoretical and experimental studies have helped determine the value of the flow rate of the reaction mixture, as well as the values of the geometric dimensions of the reactor, were determined (the diameter of the mixer, d=100÷500 mm; the length of the reactor is 1.5÷2.0 m). Processing of the reaction mixture made it possible to obtain a high degree of homogeneity in the concentration of components with large diameters of the inertial mixer ‒ 300...500 mm at average rotational speeds. The oil conversion has been improved, as well as productivity, by using equipment to produce biodiesel from fat-containing waste. Optimal pump performance is also ensured with minimal power consumption and reactor operation

Author(s):  
O. Yu. Kichigina

At production of stainless steel expensive alloying elements, containing nickel, are used. To decrease the steel cost, substitution of nickel during steel alloying process by its oxides is an actual task. Results of analysis of thermodynamic and experimental studies of nickel reducing from its oxide presented, as well as methods of nickel oxide obtaining at manganese bearing complex raw materials enrichment and practice of its application during steel alloying. Technology of comprehensive processing of complex manganese-containing raw materials considered, including leaching and selective extraction out of the solution valuable components: manganese, nickel, iron, cobalt and copper. Based on theoretical and experiment studies, a possibility of substitution of metal nickel by concentrates, obtained as a result of hydrometallurgical enrichment, was confirmed. Optimal technological parameters, ensuring high degree of nickel recovery out of the initial raw materials were determined. It was established, that for direct steel alloying it is reasonable to add into the charge pellets, consisting of nickel concentrate and coke fines, that enables to reach the through nickel recovery at a level of 90%. The proposed method of alloying steel by nickel gives a possibility to decrease considerably steel cost at the expense of application of nickel concentrate, obtained out of tails of hydrometallurgical enrichment of manganese-bearing raw materials, which is much cheaper comparing with the metal nickel.


Author(s):  
Yaroslav HONTARUK

The article deals with the current state of innovations in agro-processing industry. Indicators of innovative development of the economy are analyzed and the main functions of centers of innovation stimulation are determined. The basic problems of development of innovations at the enterprises of processing industries of the agro-industrial complex are investigated. Determination of gas oil consumption by regions of the state. Strategic directions of development of innovations in the food industry are investigated. Measures on adaptation of processing enterprises in terms of integration into the world economic space are proposed. The mechanisms of complex restructuring of the enterprises of the branch on the basis of investment and innovation basis are defined. The model of development of innovative activity at processing enterprises of agrarian sphere is developed. The necessity of insurance of financial risks at carrying out restructuring of enterprises of processing sector of agrarian sector is substantiated. Prospective directions of development of agro-processing industry on the basis of investment and innovation basis are determined. In order to create sustainable competitive advantages of the enterprises of these industries, it is necessary to approach from the point of view of a systematic approach and to carry out a set of measures aimed at: restructuring of inefficient enterprises of the industry, comprehensive state support of agriculture, reorientation from production of raw materials to production of finished products, diversification of production, attracting sufficient volume development of agricultural processing industries. This set of measures will allow to improve the enterprises of processing industry and adapt them to the requirements of globalized markets of agro-food. The development of an appropriate organizational and economic mechanism for the creation of an innovative type of entrepreneurial activity, which will help to overcome the above obstacles to the development of this type of activity, should include the following stages: in-depth studies in the field of closed cycle for the processing of oilseeds, including on the basis of NNC «All-Ukrainian Scientific and Educational Consortium»; economic justification, on the basis of experimental studies, the feasibility of creating processing cooperatives for biodiesel production; creation of project-design documentation on organization of oil production processing and restructuring of alcohol factories on an innovative basis: development of the state program of development of servicing cooperatives with anticipation of the state subsidy of agro-processing industry.


2020 ◽  
pp. 22-30
Author(s):  
SERGEY N. DEVYANIN ◽  
◽  
VLADIMIR A. MARKOV ◽  
ALEKSANDR G. LEVSHIN ◽  
TAMARA P. KOBOZEVA ◽  
...  

The paper presents the results of long-term research on the oil productivity and chemical composition of soybean oil of the Northern ecotype varieties in the Central Non-Black Earth Region. The authors consider its possible use for biodiesel production. Experiments on growing soybeans were carried out on the experimental fi eld of Russian State Agrarian University –Moscow Timiryazev Agricultural Academy (2008-2019) on recognized ultra-early ripening varieties of the Northern ecotype Mageva, Svetlaya, Okskaya (ripeness group 000). Tests were set and the research results were analyzed using standard approved methods. It has been shown that in conditions of high latitudes (57°N), limited thermal resources of the Non-Chernozem zone of Russia (the sum of active temperatures of the growing season not exceeding 2000°С), the yield and productivity of soybeans depend on the variety and moisture supply. Over the years, the average yield of soybeans amounted to 1.94 … 2.62 t/ha, oil productivity – 388 … 544 kg/ha, oil content – 19…20%, the content of oleic and linoleic fatty acids in oil – 60%, and their output from seeds harvested – 300 kg/ha. It has been established that as soybean oil and diesel fuel have similar properties,they can be mixed by conventional methods in any proportions and form stable blends that can be stored for a long time. Experimental studies on the use of soybean oil for biodiesel production were carried out on a D-245 diesel engine (4 ChN11/12.5). The concentrations of toxic components (CO, CHx, and NOx) in the diesel exhaust gases were determined using the SAE-7532 gas analyzer. The smoke content of the exhaust gases was measured with an MK-3 Hartridge opacimeter. It has been experimentally established that the transfer of a diesel engine from diesel fuel to a blend of 80% diesel fuel and 20% lubrication oil leads to a change in the integral emissions per test cycle: nitrogen oxides in 0.81 times, carbon monoxide in 0.89 times and unburned hydrocarbons in 0.91 times, i.e. when biodiesel as used as a motor fuel in a serial diesel engine, emissions of all gaseous toxic components are reduced. The study has confi rmed the expediency of using soybeans of the Northern ecotype for biofuel production.


2020 ◽  
Vol 32 (4) ◽  
pp. 733-738 ◽  
Author(s):  
R. Manurung ◽  
Taslim ◽  
A.G.A. Siregar

Deep eutectic solvents (DESs) have numerous potential applications as cosolvents. In this study, use of DES as organic solvents for enzymatic biodiesel production from degumming palm oil (DPO) was investigated. Deep eutectic solvent was synthesized using choline chloride salt (ChCl) compounds with glycerol and 1,2-propanediol. Deep eutectic solvent was characterized by viscosity, density, pH and freezing values, which were tested for effectiveness by enzymatic reactions for the production of palm biodiesel with raw materials DPO. Deep eutectic solvent of ChCl and glycerol produced the highest biodiesel yield (98.98%); weight of DES was only 0.5 % of that of the oil. In addition, the use of DES maintained the activity and stability of novozym enzymes, which was assessed as the yield until the 6th usage, which was 95.07 % biodiesel yield compared with the yield without using DES. Hence, using DES, glycerol in enzymatic biodiesel production had high potentiality as an organic solvent for palm oil biodiesel production


2021 ◽  
Vol 410 ◽  
pp. 287-292
Author(s):  
Anatolij A. Babenko ◽  
Leonid A. Smirnov ◽  
Alena G. Upolovnikova

The equilibrium interfacial distribution of sulfur and boron was estimated using the HSC 6.1 Chemistry software package (Outokumpu) and the simplex-lattice planning method. Adequate mathematical models have been constructed in the form of III degree polynomial, which describe the effect of the composition of the studied oxide system on the equilibrium distribution of sulfur and boron between the slag and the metal. Generalization of the results of experimental studies and thermodynamic modeling made it possible to obtain new data on the influence of the basicity and content of B2O3 in the slag of the CaO-SiO2-B2O3-MgO-Al2O3 system on the interphase distribution of sulfur and boron. It was found that in the range of boron oxide concentration of 1.0-10%, an increase in slag basicity from 2 to 5 at 1600°C leads to an increase in the sulfur distribution coefficient from 1 to 20 and, as a consequence, a decrease in the sulfur content in the metal from 0.02 to 0.0014 %, i.e. an increase in slag basicity favorably affects the development of the metal desulfurization process. An increase in the B2O3 content from 2.0 to 10.0% in slags formed in the region of moderate basicity, not exceeding 2-3, is accompanied at 1600°C by a decrease in the boron interphase distribution coefficient from 450 to 150 and an increase in the boron concentration in the metal from 0.006 to 0.021 %, which indicates the progress of boron reduction from slag to metal. The shift of the formed slags to the area of ​​increased basicity up to 5.0 shows a high degree of boron reduction from slag to metal. The results of the laboratory experiment confirmed the results of thermodynamic modeling.


Author(s):  
S.V. Matsenko ◽  
◽  
V.M. Minko ◽  
A.A. Koshelev ◽  
V.Yu. Piven ◽  
...  

Violation of industrial safety rules during the operation of offshore facilities for the production, storage and transportation of the hydrocarbon raw materials leads in the most cases to pollution of the marine environment with oil and its components. The works on localization and elimination of such pollution are carried out with the help of vessels of the technical support fleet and booms. When developing oil spill response plans at such facilities, a calculated determination of the technical characteristics of vessels and booms is required that are sufficient to carry out the planned activities. The basic design principles for determining the towing capacity of the technical fleet vessels involved in the localization and elimination of oil and oil product spills by trawling methods are given in the article. The calculation is based on theoretical studies performed by the authors of the physical processes occurring during the movement of objects of a mobile trawling order in the sea area. The results obtained during the course of theoretical studies were confirmed by the experimental studies carried out by the authors personally using the real pieces of equipment in the actual development of tasks for training spill containment by trawling. As a result, the empirical dependencies were obtained and experimentally confirmed, which can be used to calculate technical characteristics of the ships as part of the mobile orders and anchor systems as part of stationary orders intended for the localization and elimination of oil pollution. These results can be used, among other things, for the calculated substantiation of the technical characteristics of the technical fleet vessels designed to ensure safety of the offshore facilities for production, storage, and transportation of the hydrocarbon raw materials.


2021 ◽  
pp. 38-55
Author(s):  
A. V. Vlasenko ◽  
E. A. Evdokimov ◽  
E. P. Rodionov

The paper summarizes data on modern approaches to the diagnosis, prevention and treatment of severe acute parenchymal respiratory failure of various origins, including ARDS due to bacterial viral pneumonia. The work is based on the data of modern well-organized studies, analysis of international clinical guidelines with a high degree of evidence, as well as the results of our own long-term experimental studies and clinical observations of the treatment of patients with ARDS of various origins, including viral pneumonia of 2009, 2016, 2020. Scientifically grounded algorithms for prevention, differential diagnosis and personalized therapy of severe acute respiratory failure using innovative medical technologies and a wide range of respiratory and adjuvant treatment methods have been formulated. The authors tried to adapt as much as possible the existing current recommendations for the daily clinical practice of anesthesiologists and resuscitators.


Author(s):  
А.В. АКУЛИЧ ◽  
Л.А. ГОСТИНЩИКОВА

Исследованы закономерности внешнего массообмена при сушке ягодного сырья для различных способов энергоподвода. Установлено, что ягоды при сушке подвержены значительной объемной (72–81%) и линейной (35–43%) усадке, которую необходимо учитывать при расчете коэффициентов массоотдачи. Объекты исследования – ягоды черники, красной и черной смородины. Проведены экспериментальные исследования по сушке ягодного сырья при конвективном и конвективном с ИК-излучением способах энергоподвода. Исследования проведены при скорости сушильного агента хса1,2 м/с и температуре tса 70°С. Получены критериальные уравнения внешнего массоообмена при сушке ягод для периода постоянной скорости, учитывающие объемную усадку. Определено, что при сушке с конвективным энергоподводом объемная усадка при одном и том же значении критерия Рейнольдса оказывает на 12–20% большее влияние на интенсивность массоообмена для красной смородины по сравнению с черникой и черной смородиной. При сушке с конвективным энергоподводом, ИК-излучением и предварительным прокалыванием объемная усадка наиболее существенно влияет на массообмен для черной смородины, протекающий в 1,5–1,8 раза интенсивнее по сравнению с черникой и красной смородиной. Полученные критериальные уравнения могут быть использованы при расчете и проектировании установок для сушки ягодного сырья. The laws of external mass transfer during drying of berry raw materials for various methods of energy supply are investigated. It is established that the berries during drying are subject to significant volumetric (72–81%) and surface (35–43%) shrinkage, which must be taken into account when calculating the mass transfer coefficients. The objects of the study were various berries: blueberries, red and black currants. Experimental studies have been carried out on the drying of selected berries both in the case of convective and convective methods with IR radiation. Investigations were carried out at a drying agent velocity хса1,2 m/s and its temperature tca70°С. The criterion equations of external mass transfer during drying of berries for a period of constant speed, taking into account the volume shrinkage, are obtained. It was determined that during drying with convective energy supply, volume shrinkage with the same value of the Reynolds criterion on 12–20% has a greater effect on the mass transfer rate for red currants. When drying with convective energy supply, IR radiation and preliminary piercing, the volume shrinkage most significantly affects the mass transfer for black currants, which is 1,5–1,8 times more intense than blueberries and red currants. The obtained criterial equations can be used in the calculation and design of berries dryers.


Author(s):  
SHAPOVALOVA Nataliia ◽  
VEZHLIVTSEVA Svitlana ◽  
ANTIUSHKO Dmytro

Background. The deficiency of essential nutrients in the human body is the root cause of reduced efficiency, general resistance of the body to various diseases. That is an urgent problem in the context of the spread of coronavirus infection. In this regard, the search for opportunities to meet the needs of the population in food products that contain biologically active substances (BAS) through the use of high-value and at the same time available plant raw materials is extremely important. Marigolds attract special attention among such raw materials. The aim of the work is to study the chemical composition and evaluate the consumer properties of Tagetes L. varieties, zoned in the Kiev region, to prove the possibility of increasing the biological value of pasta by adding to their recipe powder from marigold inflorescences. Materials and methods. The object of research is pasta of B group (noodles). Inflorescences of marigolds of different varieties gathered during the flowering period in July-September 2019–2020 in the territory of Vasylkiv and Obukhiv districts of Kyiv region, Ukraine were used as enriching plant raw materials. The quality of finished pasta was assessed by organoleptic and physicochemical indexes (moisture content and titratable acidity). The content of mineral elements in the fine powder of marigold inflorescences was determined on the EXHERT-3L device, the quantitative composition and BAS identification – by spectrophotometric analysis on the device Specord-200 Analytic Jena UV-vis. The integrated quality index of pasta products was calculated taking into account the importance factors of individual indexes. Results. Comparing the obtained results, we can state that all the studied varieties – Gold Kopfen, Orange Flame, Hawaii, Equinox are characterized by high biological value, regardless of the area of collection. As a result of calculated and experimental studies it was determined that the addition of 7 % of the supplement does not provide the required supply of vitamins and minerals. Replacing the flour in the recipe by 20 % significantly improves the mineral composition, but deteriorates the taste and aromatic properties of pasta. The most optimal and rational amount of added additive is 15 %, as it improves the organoleptic properties of pasta and enriches their BAS. Conclusion. The usage of non-traditional vegetable raw materials, in particular powder from marigold inflorescences, which is rich in biologically active substances, allows not only to expand the range, improve the quality of finished products, but also increase the biological value of the product. The optimal amount of additive –powder from marigold inflorescences, was defined. It is 15 % by weight of flour in the production of noodles. This concentration allows not only to improve the organoleptic properties, but also to increase the content of biologically active substances – vitamins, micro- and macronutrients. The usage of non-traditional natural raw materials (powder from marigold inflorescences) allows to abandon artificial colorsand give the finished pasta a pleasant colorand aroma.


2012 ◽  
Vol 49 (No. 1) ◽  
pp. 7-11 ◽  
Author(s):  
J. Souček ◽  
I. Hanzlíková ◽  
P. Hutla

In case of pressed composite biofuels production the important part of the production process is the input row materials disintegration. In dependence on disintegrated material properties, disintegration device, grinding stage and technological process there is in practice necessary for disintegration of culm materials 0.5–7% and of wooden species even 0.75–10% of total energetical content of material. A wide range of these figures means that in this sphere of raw materials adaptation can be reached relative high savings through correct choice of technological process and device. The authors of the paper have measured energy consumption of fine disintegration of lignocellulose materials in dependence on particles size and moisture. By the realized measurement of different average size of both input and output particles and consequent statistical evaluation was proved the fiducial energy consumption increase at higher stage of disintegration and higher moisture of the input material. All measurements were carried-out for the grinding mill ŠK 300 and the output particles size was limited by the exchange sieves mesh dimension.


Sign in / Sign up

Export Citation Format

Share Document