scholarly journals Tomato grafting onto Solanaceae genotypes to control bacterial wilt (Ralstonia solanacearum Smith 1896)

2020 ◽  
Vol 50 ◽  
Author(s):  
Lívia Tálita da Silva Carvalho ◽  
Danilo Mesquita Melo ◽  
Pablo Forlan Vargas ◽  
Helane Cristina Aguiar Santos ◽  
Jessica Vasconcelos Ferreira

ABSTRACT The tomato cultivation in the Amazon is not feasible mainly due to the natural infestation of Ralstonia solanacearum in the soil. Preventive control through grafting has been one of the main alternatives to manage this problem. This study aimed to evaluate the compatibility of Solanaceae genotypes as rootstocks for 'Santa Clara' tomato, aiming to control the bacterial wilt. Five rootstocks were evaluated: cubiu; red jurubeba; jurubebão; commercial hybrid tomato rootstock Guardião; and 'Santa Clara' tomato (self-grafting). In the seedling phase, characteristics of rootstock survival rate and compatibility were evaluated; while, in the field, that happened for survival rate, compatibility and fruit yield. In the seedling phase, Guardião and red jurubeba showed the best performances. In the field, red jurubeba presented a low compatibility, although it obtained the best productive performance among the wild rootstocks. Guardião obtained the best compatibility and yield among the studied rootstocks. Grafting is a viable technique for tomato production under soil-borne disease conditions.

Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 973-978 ◽  
Author(s):  
C. L. Rivard ◽  
S. O'Connell ◽  
M. M. Peet ◽  
R. M. Welker ◽  
F. J. Louws

Bacterial wilt, caused by Ralstonia solanacearum, can result in severe losses to tomato (Solanum lycopersicum) growers in the southeastern United States, and grafting with resistant rootstocks may be an effective strategy for managing this disease. However, R. solanacearum populations maintain considerable diversity, and little information is known regarding the efficacy of commercially available rootstocks to reduce bacterial wilt incidence and subsequent crop loss in the United States. In this study, tomato plants grafted onto ‘Dai Honmei’ and ‘RST-04-105-T’ rootstocks had significantly lower area under the disease progress curve (AUDPC) values compared with nongrafted plants (P < 0.05). Across three locations in North Carolina, final bacterial wilt incidence for non- and self-grafted plants was 82 ± 14 to 100%. In contrast, bacterial wilt incidence for the grafted plants was 0 to 65 ± 21%. Final bacterial wilt incidence of plants grafted with Dai Honmei rootstock was 0 and 13 ± 3% at two locations in western North Carolina but 50 ± 3% at a third site in eastern North Carolina. Similarly, grafting onto RST-04-105-T rootstock significantly reduced AUDPC values at two of the three locations (P < 0.05) compared with that of the nongrafted plants, but performed poorly at the third site. Total fruit yields were significantly increased by grafting onto resistant rootstocks at all three sites (P < 0.05). Regression analyses indicated that yield was significantly negatively correlated with bacterial wilt AUDPC values (R2 was 0.4048 to 0.8034), and the use of resistant rootstocks enabled economically viable tomato production in soils naturally infested with R. solanacearum.


Author(s):  
Bitang Bamazi ◽  
Agnassim Banito ◽  
K. D. Ayisah ◽  
Rachidatou Sikirou ◽  
Mathews Paret ◽  
...  

Tomato (Solanum lycopersicum L.) is one of the most important vegetables in Togo. Unfortunately, tomatoes are susceptible to many diseases, among which bacterial wilt caused by Ralstonia solanacearum causes major yield losses. In this study, incidence of bacterial wilt and its distribution was evaluated in the central region of Togo, the major tomato producing area in the country. Overall, 16 localities were surveyed in four prefectures. In each locality, three fields were visited, and the incidence of the disease was recorded, and diseased samples were collected for laboratory investigation. The results showed that bacterial wilt occurred in all the fields visited, indicating a field incidence of 100%, whereas the plant incidence ranged from 10.00±00% to 43.33±3.33%, with an average of 20.94±1.77%. The antibody based Immunostrip test was positive for R. solanacearum in 100% of the visited fields. From 144 samples collected from fields, 45 R. solanacearum isolates were isolated on Modified SMSA media. This survey results show that tomato bacterial wilt is a real threat to tomato production in the central region of Togo.


Jurnal Agro ◽  
10.15575/2305 ◽  
2018 ◽  
Vol 5 (1) ◽  
pp. 1-12
Author(s):  
Istiqomah Istiqomah ◽  
Dian Eka Kusumawati

Salah satu penyakit penting pada produksi tomat di Indonesia adalah layu bakteri yang disebabkan oleh Ralstonia solanacearum. Alternatif untuk mengendalikan penyakit layu bakteri adalah dengan menggunakan Bacillus subtilis dan Pseudomonas fluorescens. Tujuan penelitian ini untuk mengetahui kemampuan B. subtilis dan P. fluorescens dalam mengendalikan penyakit layu bakteri yang disebabkan R. solanacearum serta mekanisme penghambatannya. Penelitian ini terdiri dari 5 tahap, yaitu perbanyakan inokulum R. solanacearum, uji virulensi dan uji hipersensitif  R. solanacearum, uji antagonis B. subtilis dan P. fluorescens terhadap R. solanacearum pada media agar, uji jenis antibiosis, penelitian di rumah kaca, dan analisis total fenol. Hasil penelitian uji antagonis menunjukkan bahwa semua isolat B. subtilis dan P. fluorescens memiliki potensi menghambat R. solanacearum dengan tipe antibiosis bakteriostatik. Hasil analisis kadar fenol menunjukkan bahwa terjadi peningkatan total fenol secara signifikan pada tanaman tomat yang diaplikasikan isolat B. subtilis UB-ABS6, P. fluorescens UB-PF5 dan P. fluorescens UB-PF6. Penelitian di rumah kaca menunjukkan bahwa semua tanaman tomat yang diaplikasikan agens hayati mengalami penundaan masa inkubasi dibandingkan dengan kontrol. Isolat B. subtilis UB-ABS2, B. subtilis UB-ABS6, P. fluorescens UB-PF5 dan P. fluorescens UB-PF6 secara signifikan menekan kejadian penyakit layu bakteri berturut-turut 50%, 30%, 60%, dan 60%. B. subtilis dan P. fluorescens dapat dimanfaatkan untuk mengendalikan layu bakteri pada tomat yang disebabkan oleh Ralstonia solanacearum. One of important disease that infects tomato production in Indonesia is bacterial wilt disease caused by Ralstonia solanacearum. Alternative on controlling bacterial wilt is using Bacillus subtilis and Pseudomonas fluorescens. Goal of the research was to find out ability of B. subtilis and P. fluorescens to control R. Solanacearum and mechanism of the inhibition. This research divided into 5 stages, i.e. propagation of R. solanacearum, virulence and hypersensitive tests of R. Solanacearum, antagonist test of B. subtilis and P. fluorescens against R. solanacearum on agar medium, antibiosis type test, research in greenhouse, and total phenol analysis. The result showed that all isolates of B. subtilis and P. fluorescens have potential to inhibite R. solanacearum by bacteriostatic antibiosis type. The total phenol level showed significant increase of phenol on tomato along with the application of isolates B. subtilis UB-ABS6, P. fluorescens UB-PF5 and P. fluorescens UB-PF6. Research in the greenhouse showed that all tomatoes, which had been given bioagent, did delay on the incubation than the control. Isolates of B. subtilis UB-ABS2, B. subtilis UB-ABS6, P. fluorescens UB-PF5, and P. fluorescens UB-PF6 had significantly inhibited the bacterial wilt disease 50%, 30%, 60%, and 60%, respectively. Therefore, B. subtilis and P. fluorescens can be used to control bacterial wilt diseases on tomato caused by Ralstonia solanacearum.


2021 ◽  
Vol 39 (1) ◽  
pp. 72-78
Author(s):  
Géssyka R Albuquerque ◽  
Lucas P Lucena ◽  
Emanuel F Assunção ◽  
Júlio Carlos P Mesquita ◽  
Adriano Márcio F Silva ◽  
...  

ABSTRACT Bacterial wilt limits tomato production and resistant rootstocks could be important for the integrated management of the disease. Since there is an interaction between local bacterial strains and tomato genotype, this study aimed to evaluate 14 tomato rootstocks to bacterial wilt in the Mata mesoregion of Pernambuco state, Brazil. The rootstocks reaction to two sequevars of Ralstonia solanacearum and two of R. pseudosolanacearum was evaluated in four experiments carried out in the greenhouse using the completely randomized experimental design, with four replications composed of four plants each. Seven genotypes were selected to evaluate the reaction to bacterial wilt as rootstocks grafting in tomato plants ‘Tomini F1’ in a production area with disease history in the Chã Grande municipality, using randomized block design with four plants per treatment in each block. In the field experiment, disease symptoms were not observed in the grafted plants in ‘Guardião’, ‘Woodstock’, and ‘Yoshimatsu’. Regarding all experiments, ‘Guardião’ and ‘Muralha’ showed the best resistance levels and could be used in the integrated management of bacterial wilt and studied in plant breeding programs.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xuefang Zheng ◽  
Yujing Zhu ◽  
Jieping Wang ◽  
Ziran Wang ◽  
Bo Liu

AbstractTomato bacterial wilt (BW) caused by Ralstonia solanacearum seriously restricts tomato production and no effective control measures are available. A microbial restoration substrate (MRS) had been proved to be effective control of tomato BW in a greenhouse cultivation. In this study, MRS was combined with an avirulent Ralstonia solanacearum (aRS) strain to control the disease under an open field condition. In the two consecutive year (2017 and 2018) trials, the combined use of aRS and MRS resulted in better disease control compared with either aRS or MRS alone. Moreover, the combined treatment was more effective than expected and suggesting a synergistic control effect. Compared with control (CK, non-aRS or MRS), the application of aRS and MRS treatments alone or in combination could all promote plant growth, increase root activity and yield (e.g. the yield for the treatment of aRS + MRS increased by 463.64% in 2017). Soil nutrients, including soil organic carbon, total nitrogen, total phosphorus and total potassium contents were also significantly increased by the application of aRS and MRS treatments alone or in combination (P < 0.05). The application of MRS or in combination with aRS changed the soil from acidic to neutral, which is one of the key factors for controlling BW. The soil enzymatic activities were notably influenced by the combined use of aRS and MRS, which increased urease (87.37% in 2017 and 60.89% in 2018), catalase (93.67% in 2017 and 279.37% in 2018) and alkaline phosphatase activities (193.77% in 2017 and 455.73% in 2018). These results suggest that the combination of MRS and aRS could effectively control tomato BW and thus represents a promising new tool to control this disease.


2014 ◽  
Vol 32 (4) ◽  
pp. 453-457 ◽  
Author(s):  
Ivani T Oliveira ◽  
Carlos A Lopes ◽  
Andrea B Moura

Fruit yield and bacterial wilt symptoms of eggplant genotypes CNPH006, CNPH171, CNPH658, CNPH778, CNPH783, and CNPH785 were quantified in soil naturally infested with Ralstonia solanacearum(race 1, biovar 3) in Brasília, Brazil.Exceptfor CNPH778, all genotypes developed at least one typical wiltedplant. Besides wilt,other symptoms considered for assessing levels of tolerance/resistance among genotypes wereplant death (CNPH006, CNPH171, CNPH658 and CNPH783), leaf chlorosis(CNPH785) and plant dwarfing (all genotypes). The occurrence of bacterial ooze on cut stems was observed in all plants grown in infested beds, including those that did not exhibit wilt symptoms. Plants grown simultaneouslyin noninfested beds of the same dimensions and soil characteristics allowed the comparison ofyield losses due to the pathogen. The genotypes were grouped according to their ability to maintain fruit production in the infested area. CNPH785 was the most tolerant genotype, with no significant loss due to the disease,followed by CNPH783, CNPH778 and CNPH171, with mean losses of 19.3%, 11.4%, and 10.1%, respectively. The genotypes CNPH658 and CNPH006 were the most susceptible, with average losses of 99.53 and 99.32%, respectively.


2014 ◽  
Vol 77 (2) ◽  
pp. 320-324 ◽  
Author(s):  
STEPHANIE POLLARD ◽  
JERI BARAK ◽  
RENEE BOYER ◽  
MARK REITER ◽  
GANYU GU ◽  
...  

Over the past decade, the Eastern Shore of Virginia (ESV) has been implicated in at least four outbreaks of salmonellosis associated with tomato, all originating from the same serovar, Salmonella enterica serovar Newport. In addition to Salmonella Newport contamination, the devastating plant disease bacterial wilt, caused by the phytopathogen Ralstonia solanacearum, threatens the sustainability of ESV tomato production. Bacterial wilt is present in most ESV tomato fields and causes devastating yield losses each year. Although the connection between bacterial wilt and tomato-related salmonellosis outbreaks in ESV is of interest, the relationship between the two pathogens has never been investigated. In this study, tomato plants were root dip inoculated with one of four treatments: (i) 8 log CFU of Salmonella Newport per ml, (ii) 5 log CFU of R. solanacearum per ml, (iii) a coinoculation of 8 log CFU of Salmonella Newport per ml plus 5 log CFU of R. solanacearum per ml, and (iv) sterile water as control. Leaf, stem, and fruit samples were collected at the early-green-fruit stage, and S. enterica contamination in the internal tissues was detected. S. enterica was recovered in 1.4 and 2.9% of leaf samples from plants inoculated with Salmonella Newport only and from plants coinoculated with Salmonella Newport plus R. solanacearum, respectively. S. enterica was recovered from 1.7 and 3.5% of fruit samples from plants inoculated with Salmonella Newport only and from plants coinoculated with Salmonella Newport plus R. solanacearum, respectively. There were significantly more stem samples from plants coinoculated with Salmonella Newport plus R. solanacearum that were positive for S. enterica (18.6%) than stem samples collected from plants inoculated with Salmonella Newport only (5.7%). Results suggested that R. solanacearum could influence S. enterica survival and transportation throughout the internal tissues of tomato plants.


Plant Disease ◽  
2015 ◽  
Vol 99 (1) ◽  
pp. 119-124 ◽  
Author(s):  
Sanju Kunwar ◽  
Mathews L. Paret ◽  
Stephen M. Olson ◽  
Laura Ritchie ◽  
Jimmy R. Rich ◽  
...  

Root-knot nematodes (RKNs; Meloidogyne spp.) and Ralstonia solanacearum, the causal agent of bacterial wilt, are major soilborne pathogens in U.S. tomato production. Methyl bromide has been used for decades to effectively manage RKN but its phase-out and the high cost of other effective fumigants such as 1,3-dichloropropene has resulted in a need to develop sustainable alternatives. Many of the commercially popular varieties used by the tomato industry do not have resistance to RKNs and R. solanacearum. Recent studies worldwide have shown the potential for grafting using resistant rootstocks as a sustainable and ecofriendly practice for R. solanacearum management. However, the effectiveness of R. solanacearum-resistant rootstocks on RKN management is not known. In this study, three commercially available R. solanacearum-resistant tomato rootstocks (‘RST-04-106-T’, ‘BHN 998’, and ‘BHN 1054’) were evaluated for resistance to Meloidogyne incognita in field tomato production in four field trials conducted for two consecutive years in two geographical locations: Florida and Virginia. Grafting rootstocks onto ‘BHN 602’ a tomato scion susceptible to bacterial wilt and RKNs, significantly reduced root galling caused by RKNs in all four field trials and increased yield in two of the trials compared with the nongrafted treatment. This study demonstrates the potential of grafting for managing multiple soilborne pathogens using the same rootstocks.


Plant Disease ◽  
2009 ◽  
Vol 93 (5) ◽  
pp. 549-549 ◽  
Author(s):  
R. Sikirou ◽  
F. Beed ◽  
V. Ezin ◽  
G. Gbèhounou ◽  
S. A. Miller ◽  
...  

In June 2004, wilted tomatoes with no foliar yellowing were observed in Ouègbo, Atlantique District, Benin. The cut tomato stems released whitish bacterial ooze. Longitudinal sections of most stems showed brown vascular discoloration. Twenty symptomatic tomato plants were collected from 10 fields and exported to the Institute of Plant Disease and Plant Protection, Leibniz Universität Hannover, Germany. Bacteria were isolated on triphenyl tetrazolium chloride (TTC) medium (2) and three of the nine bacterial isolates that resembled Ralstonia solanacearum (colonies with red center and whitish periphery) and reference strain ToUdk (race 1 biovar 3; N. Thaveechai, Kasetsart University, Bangkok, Thailand) were used for pathogenicity tests. Five 4-week-old tomato plants cv. Tohounvi, grown in individual plastic pots (14 × 16 cm) containing sterilized field soil, were inoculated with each of the four isolates individually by soil drenching with 30 ml of the test cultures at 108 CFU/ml. Control plants were treated with 30 ml of sterile water. All plants were incubated in a glasshouse at 30°C. All plants inoculated with the isolates from Benin wilted 4 days after inoculation with symptoms similar to those observed in the field. Plants inoculated with the reference strain wilted 7 to 11 days after inoculation. Control plants treated with water remained healthy. R. solanacearum was recovered from the 20 symptomatic plants on TTC medium. The identity of the strains in comparison with the reference strain was confirmed by PCR with species-specific primers 759/760, which produced a single 281-bp fragment (3). Because similar symptoms were being increasingly reported by farmers across Benin and linked with reduced tomato yields, a disease survey was undertaken by IITA in 2006 and 2007. Wilted tomato plants were found across all agro-ecological zones of Benin (3 to 72% of plants per field). Isolates were recovered from the southeastern districts of Adja-Ouèrè, Sakété, Adjohoun, and Dangbo, the southwestern districts of Klouékanmè and Athiémé, the southern districts of Toffo and Bohicon, the central districts of Dassa and Savè, and the northern districts of Malanville and Karimama. Identification of R. solanacearum was confirmed following inoculation of tomato, production of characteristic wilting symptoms, recovery of the pathogen on TTC medium, and positive identification with ELISA kits (Pathoscreen Rs; Agdia Inc., Elkhart, IN). To our knowledge, this is the first report of R. solanacearum infecting tomato in Benin. Tomato is the most cultivated vegetable crop in Benin and important to the livelihood of many people in peri-urban and rural areas. Understanding that the cause of the observed crop losses is R. solanacearum may lead to implementation of management strategies such as deployment of disease-resistant cultivars or grafting tomatoes onto bacterial wilt-resistant rootstocks (1). References: (1) P. Aggarwal et al. Indian J. Agric. Sci. 78:379, 2008. (2) A. Kelman. Phytopathology 44:693, 1954. (3) N. Opina et al. Asian Pac. J. Mol. Biol. Biotechnol. 5:19, 1997.


2020 ◽  
Vol 30 (4) ◽  
pp. 335-343
Author(s):  
R Ashrafi ◽  
RM Saiem ◽  
M Kamruzzaman ◽  
MSAA Mamun ◽  
HA Begum

The use of agricultural waste is of great interest to sustainable agriculture. An investigation was carried out to evaluate the effects of compost and compost tea made from agricultural waste rice straw on the yield and quality of two horticultural crops strawberry and tomato. In strawberry experiment, six treatments were considered which wereT1: 100% soil (as a control), T2: 80% soil + 20% compost, T3: 60% soil + 40% compost, T4: 40% soil + 60% compost, T5: 20% soil + 80% compost & T6: 100% compost. Results revealed that number of fruit, fruit yield and total sugar (%)was increased with the increasing level of compost up to 80% after that decreased at 100% compost. The treatment T5: 20% soil + 80% compost gave the best results among the treatments to grow strawberry with good yield (185.3 g/plant) and sweetness (total sugar 5.19%). On the other hand, six treatments i.e. T1: Control, T2: Compost (5 t/ha), T3: Compost tea (50% concentration), T4: Compost (5 t/ha) + Compost tea (50% concentration), T5: Compost tea (100% concentration) and T6: Compost (5t/ha) + Compost tea (100% concentration) were considered in tomato experiment. As a result, it was observed that combined application of compost (5 t/ha) along with compost tea (100% conc.) (T6) gave the highest yield of tomato than not only control (T1) but also single application of compost or compost tea (T2, T3, T4&T5). Level of compost tea concentration also showed significant effect on fruit yield of tomato. Comparing between treatment T4 and T6, fruit yield was found higher (1027.67 g/plant) in treatment T6: Compost (5t/ha) + Compost tea (100% conc.) than 961.3 g/plant in T4: Compost (5 t/ha) + Compost tea (50% conc.). So, it could be summarized that use of rice straw as compost and compost tea affects positively both in two experiments. The results of this study confirm the beneficial effects of compost to increase the yield and sweetness of strawberry and combination of compost and compost tea to increase the yield of tomato. Progressive Agriculture 30 (4): 335-343, 2019


Sign in / Sign up

Export Citation Format

Share Document