Growth, Development, and Morphological Differences among Native and Nonnative Prickly Nightshades (Solanum spp.) of the Southeastern United States

2012 ◽  
Vol 5 (3) ◽  
pp. 341-352 ◽  
Author(s):  
Charles T. Bryson ◽  
Krishna N. Reddy ◽  
John D. Byrd

Prickly nightshades are troublesome weeds of natural habitats, pastures, feedlots, right-of-ways, and croplands. Native and nonnative invasive weedy species of prickly nightshades were compared to determine growth, development, and morphological differences. Six (Solanum bahamense, Solanum capsicoides, Solanum carolinense, Solanum dimidiatum, Solanum donianum, and Solanum pumilum) of the 18 species of prickly nightshades studied are native to the US. Two species, Solanum citrullifolium and Solanum rostratum, are annuals; the others are perennials or are short lived perennials or annuals in northern extremes of their range in North America. Tables were developed from new and existing data to differentiate vegetative and reproductive characteristics among 18 species of prickly nightshade found in the southeastern US. In greenhouse experiments, average plant height ranged from 24 and 26 cm (9.45 and 10.24 inch) for S. carolinense and Solanum jamaicense, respectively, to 100 and 105 cm for Solanum tampicense and Solanum sisymbriifolium, respectively at 10 wk after emergence (WAE). By 10 WAE, the average number of leaves per plant ranged from < 10 for S. carolinense and Solanum torvum to > 40 leaves/plant for S. rostratum and S. dimidiatum. Average number of nodes/plant main stem ranged from 11, 12, and 14 nodes in S. jamaicense, S. torvum, and S. carolinense, respectively, to 54 nodes in S. rostratum. Average plant dry weights were collected at 10 WAE and were greatest for Solanum mammosum and (> 17 g/plant) (0.6001 oz/plant) and least for S. carolinense (1 g/plant). Based on these data, nightshade growth rate and dry weight were variable among some species and variability may be a result of phenology and life cycles, annual or perennial. Plants of S. rostratum, an annual, were relatively tall and produced high number of nodes and leaves and had the shortest period from emergence to flower among the prickly nightshades evaluated.

Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 312
Author(s):  
Nolwenn Hymery ◽  
Xavier Dauvergne ◽  
Halima Boussaden ◽  
Stéphane Cérantola ◽  
Dorothée Faugère ◽  
...  

Twelve halophyte species belonging to different families, widely represented along French Atlantic shoreline and commonly used in traditional medicine, were screened for protective activities against mycotoxins, in order to set out new promising sources of natural ingredients for feed applications. Selected halophytic species from diverse natural habitats were examined for their in vitro anti-mycotoxin activities, through viability evaluation of Madin-Darby Bovine Kidney (MDBK) and intestinal porcine enterocyte (IPEC-J2) cell lines. Besides, the in vitro antioxidant activities of plant extracts were assessed (total antioxidant and 2,2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging bioassays). Of the 12 species, Galium arenarium, Convolvulus soldanella and Eryngium campestre exhibited the most protective action on MDBK and IPEC-J2 cells against zearalenone (ZEN) or T2 toxin contamination (restoring about 75% of cell viability at 10 μg·mL−1) without inflammation response. They also had strong antioxidant capacities (Inhibitory concentration of 50% (IC50) < 100 μg·mL−1 for DPPH radical and total antioxidant capacity (TAC) of 100 to 200 mg Ascorbic Acid Equivalent (AAE)·g−1 Dry Weight), suggesting that cell protection against intoxication involves antioxidant action. A bio-guided study showed that fractions of G. arenarium extract protect MDBK cells against T2 or ZEN toxicity and several major compounds like chlorogenic acid and asperuloside could be involved in this protective effect. Overall, our results show that the halophytes G. arenarium, C. soldanella and E. campestre should be considered further as new sources of ingredients for livestock feed with protective action against mycotoxin intoxication.


1994 ◽  
Vol 8 (1) ◽  
pp. 154-158 ◽  
Author(s):  
William E. Haigler ◽  
Billy J. Gossett ◽  
James R. Harris ◽  
Joe E. Toler

The growth, development, and reproductive potential of several populations of organic arsenical-susceptible (S) and -resistant (R) common cocklebur biotypes were compared under noncompetitive field conditions. Plant height, leaf area, aboveground dry weights, and relative growth rate (RGR) were measured periodically during the growing season. Days to flowering, bur dry weight, and number of burs per plant were also recorded. Arsenical S- and R-biotypes were similar in all measured parameters of growth, development, and reproductive potential. Populations within each biotype varied occasionally in plant height, leaf area, aboveground dry weights, and reproductive potential.


Weed Science ◽  
1978 ◽  
Vol 26 (1) ◽  
pp. 51-57 ◽  
Author(s):  
M. B. Awang ◽  
T. J. Monaco

Germination studies on camphorweed [Heterotheca subaxillaris(Lam.) Britt. & Rusby] revealed that freshly harvested disk achenes germinated best at 17.5 C (88%) while ray achenes were dormant. Camphorweed seed from disk achenes also germinated at temperatures as low as 3 C. Seedlings grown under long-day conditions at 23 C day and 8 C night temperatures for 144 days elongated at the rate of 0.18 cm/day. Plants grown under short-day conditions at the same temperature regime elongated at the rate of 0.06 cm/day. Total leaf surface area, fresh weight, and dry weight of shoots of plants grown under long days were at least 1.5 times greater than plants grown under short day conditions. Camphorweed, regardless of size and age, survived a 2-h exposure at −5 C. All plants in the rosette stage survived at −15 C in the freezer and an overnight temperature of −11.7 C in the field, whereas larger plants were killed at these temperatures. Stage of growth was an important factor in the herbicidal control of camphorweed. Plants in the rosette stage were generally more susceptible to herbicides than older plants. Simazine [2-chloro-4,6-bis(ethylamino)-s-triazine] at 3.4 kg/ha, paraquat (1,1′-dimethyl-4,4′-bypyridinium ion) at 0.6 kg/ha, methazole [2-(3,4-dichlorophenyl)-4-methyl-1,2,4-oxadiazolidine-3,5-dione] at 5.0 kg/ha, and a formulated mix of diuron [3–3,4-dichlorophenyl)-1,1-dimethylurea] and terbacil (3-tert-butyl-5-chloro-6-methyluracil) at 4.5 kg/ha provided adequate control of camphorweed in the rosette stage. Asulam (methyl sulfanilylcarbamate) at 2.2 or 4.5 kg/ha applied alone did not control camphorweed in the rosette form but was more effective on older plants. Various combinations of these herbicides were generally effective at both stages of growth.


2009 ◽  
Vol 44 (12) ◽  
pp. 1673-1681 ◽  
Author(s):  
Sebahattin Çürük ◽  
H. Yıldız Dasgan ◽  
Sedat Mansuroğlu ◽  
Şener Kurt ◽  
Meltem Mazmanoğlu ◽  
...  

The objective of this work was to evaluate the effect of grafting (onto Solanum torvum Sw.) on plant growth, yield and fruit quality of the Pala and Faselis eggplant (Solanum melongena L.) cultivars, grown in a soil infested with Verticillium dahliae Kleb. and Meloidogyne incognita, or in noninfested soil. Soil infestation decreased yield, plant height, final above-ground biomass, and also reduced fruit mean weight and shoot dry weight depending on cultivar or grafting. Grafting decreased fruit oxalic acid and the soluble solid contents, and increased mean fruit weight, depending on cultivar and soil infestation. Grafting also reduced the negative effects of the pathogens on disease index, plant height and shoot dry weight. Cultivar Pala was more vigorous than Faselis, and S. torvum was a vigorous rootstock. The combination of a vigorous rootstock with a weak cultivar (Faselis) is more profitable than that of a vigorous rootstock and a vigorous cultivar (Pala). Using S. torvum as a rootstock for cultivar Faselis, grown in soil infested with the pathogens, is most likely to be useful in conventional and low-input sustainable horticulture, since grafting increases protection against the pathogens, and reduces the losses in quality and yield.


Soil Research ◽  
2017 ◽  
Vol 55 (3) ◽  
pp. 285 ◽  
Author(s):  
Xiaolong Ren ◽  
Peng Zhang ◽  
Xiaoli Liu ◽  
Shahzad Ali ◽  
Xiaoli Chen ◽  
...  

Rain-harvesting planting can improve crop biomass and enhance precipitation use efficiency in rainfed semiarid areas. In this study, field trials were conducted during summer 2007–2010 to determine the impacts of different mulching patterns in rainfall harvesting planting on spring corn growth and development in a typical semihumid dryland farming area of the Loess Plateau in China, which is characterised by spring droughts. Rain-harvesting ridges and planting furrows were mulched with 8% biodegradable film (RCSB), liquid film (RCSL), or not mulched (RCSN), and bare land drilling without mulching served as the control (CF). We found that the rain-harvesting effects of ridges and the evaporation-inhibiting and moisture-conserving effects of mulching materials during the spring corn growing season significantly increased water storage in the 0–100cm soil layer (P<0.05) compared with CF, where mulching was more beneficial than the non-mulching treatments. In the 100–200cm soil layers, there were no significant effects (P>0.05) of the treatments on water storage. During 2007–2010, the average plant height increased by 26.6%, 15.4%, and 11.1% under RCSB, RCSL, and RCSN relative to CF respectively, whereas the per plant biomass increased by 26.6%, 15.4%, and 11.1% under these treatments, and the grain yield increased by 32.3%, 17.5%, and 15.0%. Therefore, in the semihumid dryland farming areas of the Loess Plateau, rain-harvesting planting greatly increased the growth, development, and dry matter accumulation by spring corn, thereby enhancing its biomass yield, whereas the plastic-covered ridges and furrows mulched with biodegradable films substantially increased the yield-enhancing effects.


Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 294
Author(s):  
Ma Claudia Castañeda-Saucedo ◽  
Ernesto Tapia-Campos ◽  
Jessica del Pilar Ramírez-Anaya ◽  
Jaqueline Beltrán

Stevia is an important non-caloric sweetener that has health-beneficial properties. The objective is to evaluate growth, development, and rooting of stevia plants during different seasons of the year using growth hormones. Eight experiments were set up in Ciudad Guzman, Jalisco, Mexico, with three treatments (T): T1, indol-3 butyric acid (IBA) 7.4 mM; T2, alphanaphthylacetamide (ANA) 6.4 mM + IBA 0.3 mM; and T3, control. The variables evaluated were rooted plantlets, plant height, root length, number of leaves, stem diameter, leaf dry weight, stem dry weight, root dry weight, leaf area, shoot biomass, total biomass, as well as development and growth indexes. Four samplings were conducted in each experiment. The results show that the most appropriate months for propagating stevia cuttings are February, March, April, May, and July, when 96% to 99% of the cuttings rooted. The hormones had the best results related to production of root development. The control was outstanding only in variables related to production of shoot biomass and not to root development. It is concluded that stevia can be propagated vegetatively using cuttings treated with IBA 7.4 mM or ANA 6.4 mM + IBA 0.3 mM, preferable in the period from February to July, with the exception of June.


1992 ◽  
Vol 124 (1) ◽  
pp. 87-95 ◽  
Author(s):  
K.L. Kouamé ◽  
M. Mackauer

AbstractThe influence of nutrient stress on growth, development, and reproduction in apterous virginoparae of the pea aphid, Acyrthosiphon pisum (Harris), was investigated in the laboratory. We tested the hypothesis that species with a high reproductive investment have low resistance to starvation. Aphids in two groups were starved daily from birth for 4 h and 6 h, respectively, and compared with feeding counterparts reared on leaves of broad beans, Vicia faba L. Aphid wet weight increased as an exponential function of age in all groups. Starved aphids had lower adult weight and required longer from birth to parturition than feeding aphids. These effects increased with the length of daily starvation. The number of offspring produced was correlated with adult dry weight. Aphids were unable to compensate, or to compensate completely, for water and nutrient loss resulting from starvation. It is suggested that pea aphids allocate resources first to maintenance and then to reproduction when deprived of food.


2003 ◽  
Vol 135 (5) ◽  
pp. 697-712 ◽  
Author(s):  
E. Matthew Hansen ◽  
Barbara J. Bentz

AbstractNew spruce beetle, Dendroctonus rufipennis (Kirby), adults of univoltine and semivoltine life cycles, as well as re-emerged parent beetles, were laboratory-tested for differences in reproductive capacity and brood characteristics. Parameters measured from the three groups include dry weight, lipid content, and egg production. Brood characteristics measured include egg length, development rates, and survival densities. Although there were some differences in dry weight and lipid content, females from the univoltine, semivoltine, and re-emerged parent groups did not greatly differ in egg production. Egg length was slightly smaller for eggs from univoltine parents, but other measured brood characteristics did not differ among the three parent groups, including the density of the surviving brood. In a field study, re-emerged parent beetles were determined to be flight capable. These findings imply that populations with univoltine broods will have higher growth rates than semivoltine populations. Consequently, the presence of univoltine broods, which is weather dependent, increases the risk of a beetle outbreak or can accelerate the rate of spruce mortality in an established outbreak. These results also indicate that re-emerged parent beetles can contribute substantially to brood production. Suppression strategies can be more effective if managers consider the ecological consequences of brood production from the three parent groups.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1137f-1137
Author(s):  
Wilfredo Colon ◽  
Mike Kane ◽  
Dewayne Ingram ◽  
Hilton Biggs

Stage 2 micropropagules were transferred into woody plant medium supplemented with either 0, 0.1, 1, 10, 100 mg/L ABA (Abscisic acid) and with or without 1 mg/L IBA (Indole-3-butyric acid), Significant decreases in total dry weight and shoot length were observed at 1, 10 and 100 mg/L of ABA regardless of IBA concentration, Leaf area was significantly reduced in all treatments by increasing ABA levels. In the absence of IBA no callus formed but lateral roots developed. Another experiment using ABA levels of 0, 0.1, 0.5 and 0, 1 mg/L IBA was conducted. Total number of roots decreased with increasing ABA levels. Adventitious roots which formed on the stem and roots originating from root primordia were observed in all ABA levels with IBA, Callus did not form in the treatments lacking IBA. Scanning electron microscopy was used to document morphological differences due to ABA, Abscisic acid levels in leaf tissue were assayed using immunological techniques.


HortScience ◽  
2010 ◽  
Vol 45 (1) ◽  
pp. 43-47 ◽  
Author(s):  
Neil S. Mattson ◽  
W. Roland Leatherwood

Silicon (Si) is a beneficial nutrient that improves biotic and abiotic stress tolerance of several crop species. Previous Si research with container-grown floriculture crops has either focused on a limited number of species or has been conducted in hydroponics using purified water, but little research has been conducted with plants grown in soilless substrates. The objective of this experiment was to examine whether weekly potassium silicate drenches would alter leaf Si concentration or affect morphological traits of several floriculture species grown in soilless substrate. Rooted liners of 21 cultivars were transplanted into a peat-based substrate. Control plants received no Si supplementation, whereas treated plants were given weekly drenches of 100 mg·L−1 Si from potassium silicate for 10 weeks. Leaf Si concentration of control plants ranged from 211 mg·L−1 for petunia (Petunia ×hybrida Vilm. ‘Cascadias Cherry Spark’) to 2606 mg·L−1 for argyranthemum [Argyranthemum frutescens (L.) Sch. Bip. ‘Sunlight’]. Si supplementation increased leaf Si concentration of 11 cultivars; leaf Si concentrations for these supplemented plants were 13% to 145% greater than control plants. Among the taxa studied, Si supplementation response was variable; Si either increased or decreased height, diameter, fresh weight, dry weight, flower diameter, and leaf thickness. For three cultivars, these morphological traits were apparently unaffected by Si supplementation despite accumulating Si. Similarly, significant morphological differences were observed in four cultivars that did not accumulate Si. Eight cultivars both accumulated Si and showed significant morphological differences. Our results demonstrate that many common floriculture species grown in a peat-based substrate do take up Si and that SI may have an effect on plant development. Consequently, more work is needed to determine the appropriate rate of Si supplementation and to examine additional species.


Sign in / Sign up

Export Citation Format

Share Document