scholarly journals Effect of salinity stress on mycorrhizal association and growth response of peanut infected by Glomus mosseae

2010 ◽  
Vol 56 (No. 7) ◽  
pp. 318-324 ◽  
Author(s):  
A.S. Al-Khaliel

Arbuscular mycorrhiza is a mutualistic association between fungi and higher plants, and play a critical role in nutrient cycling and stress tolerance. However, much less is known about the mycorrhiza-mediated enhancement in growth and salinity tolerance of the peanuts (Arachis hypogaea L.) growing in the arid and semi-arid areas. Therefore, mycorrhizal status of Glomus mosseae in diverse salinity levels on original substrate soil conditions was investigated. Different growth parameters, accumulation of proline content and salt stress tolerance were studied. These investigations indicated that the arbuscular mycorrhizal fungi could improve growth of peanuts under salinity through enhanced nutrient absorption and photosynthesis. Chlorophyll content and leaf water content were increased significantly under salinity stress by the inoculation with mycorrhizal fungi. Tolerance of the plants to salinity was increased and the mycorrhizal association was found highly effective in enhancing peanut growth and establishment in soils under salinity and deficient in phosphorus.

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Li Wang ◽  
Jieting Wu ◽  
Fang Ma ◽  
Jixian Yang ◽  
Shiyang Li ◽  
...  

Within the rhizosphere, AM fungi are a sensitive variable to changes of botanic and environmental conditions, and they may interact with the biomass of plant and other microbes. During the vegetative period of thePhragmites australisgrowing in the Sun Island Wetland (SIW), the variations of AM fungi colonization were studied. Root samples of three hydrologic gradients generally showed AM fungi colonization, suggesting that AM fungi have the ability for adaptation to flooded habitats. There were direct and indirect hydrological related effects with respect to AM fungi biomass, which interacted simultaneously in the rhizosphere. Though water content in soil and reed growth parameters were both positively associated with AM fungi colonization, only the positive correlations between reed biomass parameters and the colonization could be expected, or both the host plant biomass and the AM fungi could be beneficial. The variations in response of host plant to the edaphic and hydrologic conditions may influence the effectiveness of the plant-mycorrhizal association. This study included a hydrologic component to better assess the role and distribution of AM fungi in wetland ecosystems. And because of that, the range of AM fungi was extended, since they actually showed a notable adaptability to hydrologic gradients.


2017 ◽  
Vol 30 (2) ◽  
pp. 72-82
Author(s):  
Abdulnabi A.A. Matrood ◽  
Azher H. Al-Taie

The agricultural production processes currently targeted reducing chemical fungicides usage and increasing bio-agent application through controlling diseases alone or integrating it with other factors. The study aimed to investigate the induction of systemic resistance by multi bio-agents represented by mycorrhizal fungi Glomus mosseae, G. intradicas and Trichoderma harizanum against pathogenic fungus Rhizoctonia solani which caused wilt disease and growth defoliation to Okra seedling. Three isolate of R. solani were recorded on root of Okra seedling, named (local - Batra). Isolate no. (3) was more virulence than other isolates in damping off disease in the pre and post emergence. Results also showed that G. mosseae and G. intradicas with T. harizanum had a positive influence in reducing detrimental effect of R. solani in all growth parameters (e.g. fresh and dry weight of root) on disease severity on Okra plant caused by R. solani. Bio-agents (G. mosseae,G. intradicas and T. harizanum) increased resistance in Okra plants by raising production of enzymescatalase and Peroxidase.this experiment was revealed that using a complex of bio-agent’s factors were greatly increase the efficiency of biological control than using each of them individually. We conclude that the broad diversity of rhizosphere micro-organisms as well as the confronting between the bio-chemical and physical changes could be reflected the variations in the metabolic secondary products that could inhibit pathogens.


2019 ◽  
Vol 20 (17) ◽  
pp. 4199 ◽  
Author(s):  
Ali Bahadur ◽  
Asfa Batool ◽  
Fahad Nasir ◽  
Shengjin Jiang ◽  
Qin Mingsen ◽  
...  

Arbuscular mycorrhizal fungi (AMF) establish symbiotic interaction with 80% of known land plants. It has a pronounced impact on plant growth, water absorption, mineral nutrition, and protection from abiotic stresses. Plants are very dynamic systems having great adaptability under continuously changing drying conditions. In this regard, the function of AMF as a biological tool for improving plant drought stress tolerance and phenotypic plasticity, in terms of establishing mutualistic associations, seems an innovative approach towards sustainable agriculture. However, a better understanding of these complex interconnected signaling pathways and AMF-mediated mechanisms that regulate the drought tolerance in plants will enhance its potential application as an innovative approach in environmentally friendly agriculture. This paper reviews the underlying mechanisms that are confidently linked with plant–AMF interaction in alleviating drought stress, constructing emphasis on phytohormones and signaling molecules and their interaction with biochemical, and physiological processes to maintain the homeostasis of nutrient and water cycling and plant growth performance. Likewise, the paper will analyze how the AMF symbiosis helps the plant to overcome the deleterious effects of stress is also evaluated. Finally, we review how interactions between various signaling mechanisms governed by AMF symbiosis modulate different physiological responses to improve drought tolerance. Understanding the AMF-mediated mechanisms that are important for regulating the establishment of the mycorrhizal association and the plant protective responses towards unfavorable conditions will open new approaches to exploit AMF as a bioprotective tool against drought.


2012 ◽  
Vol 4 (1) ◽  
pp. 144-155 ◽  
Author(s):  
Ashok Aggarwal ◽  
Nisha Kadian ◽  
Karishma Karishma ◽  
Neetu Neetu ◽  
Anju Tanwar ◽  
...  

Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies) and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different plant developmental stages. In the past two decades,biotechnology research has provided considerable insights into the mechanism of biotic stress tolerance in plants at the molecular level. Furthermore, different abiotic stress factors may provoke osmotic stress, oxidative stress and protein denaturation in plants, which lead to similar cellular adaptive responses such as accumulation of compatible solutes, induction of stress proteins, and acceleration of reactive oxygen species scavenging systems. Recently, various methods are adapted to improve plant tolerance to salinity injury through either chemical treatments (plant hormones, minerals, amino acids, quaternary ammonium compounds, polyamines and vitamins) or biofertilizers treatments (Asymbiotic nitrogen-fixing bacteria, symbiotic nitrogen-fixing bacteria) or enhanced a process used naturally by plants (mycorrhiza) to minimise the movement of Na+ to the shoot. Proper management of Arbuscular Mycorrhizal Fungi (AMF) has the potential to improve the profitability and sustainability of salt tolerance. In this review article, the discussion is restricted to the mycorrhizal symbiosis and alleviation of salinity stress.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2309
Author(s):  
Ashwaq A. Najjar ◽  
Arnd J. Kuhn ◽  
Sharaf M. Al-Tardeh ◽  
Christina M. Kuchendorf

The efficient transfer of nutrients to plants in the form of biofertilizers on poor substrate was investigated. Biochar and dried algae biomass as well as mineral fertilizer were used to test the growth of the Palestinian ‘Rehan’ barley cultivar under salinity stress (4, 8, and 16 mS/cm EC). Rehan cultivar showed resilience to moderate levels of salinity and could still grow under high salinity stress (16 mS/cm EC). Rehan barley possessed better growth at early growth stage under the applied biofertilizers such as dried freshwater algal biomass (Chlorella vulgaris) and nutrient-laden biochar. It showed better growth than wheat (ssp. scirocco) under the same conditions. Its growth was highly improved by biochar treatment in low and moderate salinity conditions. Moreover, the combined effect between biochar and dried algae biomass could improve Rehan barley growth, but less than the effect of each biofertilizer separately. The biofertilizers affected most plant growth parameters under the salinity level of 4 and 8 mS/cm EC positively, while the growth declined again at 16 mS/cm EC. Overall, the biochar treatment showed the same effect as the mineral fertilizer on most of the parameters. The dried algae biomass and biochar also affected soil conditions. The highest soil water content (15.09%) was found in algae biomass treatments with 16 mS/cm EC. Biochar with 8 and 16 mS/cm EC had the highest pH value (8.63) near the rhizospheres. The nitrogen level was highest in the bottom soil sample (0.28 g N/kg soil) for biochar with 0 and 4 mS/cm EC. Meanwhile, the phosphate concentration was the highest (3.3 mg PO3−2/kg soil) in algae fertilizer treatments with 0 mS/cm EC in the bottom soil sample and lowest (4.14 mg PO3−2/kg soil) for the biochar with 8 mS/cm EC. The dried algae biomass and the biochar treatments can subsequently be viewed as conditioner substrates for improving the quality and fertility of the soil. Where possible, they should be considered as complement or replacement of mineral and manure fertilization to improve the impact on soil and environment.


2021 ◽  
Vol 13 (8) ◽  
pp. 4547
Author(s):  
Mohamed E. El-Sharnouby ◽  
Metwally M. Montaser ◽  
Sliai M. Abdallah

The flower industry depends on oil and fragrance, which is addressed in the current work. Different concentrations of NaCl (0, 250, 500, 1000, and 1500 ppm) were applied to Taif rose plants (Rosa damascena var. trigintipetala Dieck) to evaluate their effects on growth and essential oil content. Results clearly indicated the highest survival percentage (98.3%) was seen in untreated plants compared to plants under salinity stress. Moreover, increasing the NaCl levels induced an adverse effect on the growth parameters of Taif rose plants, while some essential oil contents were increased to the maximum degree of their tolerance to salinity stress. The extracted essential oils were analyzed using GC/MS. The essential oils of Taif rose plants treated with 500 ppm NaCl recorded the highest values of citronellol, geraniol and phenylethyl alcohol contents (16.56, 8.67 and 9.87%), respectively. NaCl at 250 ppm produced the highest values of heneicosane (13.12%), and then decreased to the lowest value (7.79%) with the increase of NaCl to 1500 NaCl, compared to the control and other NaCl levels. The current results could highlight the impact of salinity stress on Rosa damascena Miller var. trigintipetala Dieck for better economic and industrial applications.


2021 ◽  
Vol 13 (15) ◽  
pp. 8369
Author(s):  
Chintan Kapadia ◽  
R. Z. Sayyed ◽  
Hesham Ali El Enshasy ◽  
Harihar Vaidya ◽  
Deepshika Sharma ◽  
...  

Salinity significantly impacts the growth, development, and reproductive biology of various crops such as vegetables. The cultivable area is reduced due to the accumulation of salts and chemicals currently in use and is not amenable to a large extent to avoid such abiotic stress factors. The addition of microbes enriches the soil without any adverse effects. The effects of microbial consortia comprising Bacillus sp., Delftia sp., Enterobacter sp., Achromobacter sp., was evaluated on the growth and mineral uptake in tomatoes (Solanum Lycopersicum L.) under salt stress and normal soil conditions. Salinity treatments comprising Ec 0, 2, 5, and 8 dS/m were established by mixing soil with seawater until the desired Ec was achieved. The seedlings were transplanted in the pots of the respective pH and were inoculated with microbial consortia. After sufficient growth, these seedlings were transplanted in soil seedling trays. The measurement of soil minerals such as Na, K, Ca, Mg, Cu, Mn, and pH and the Ec were evaluated and compared with the control 0 days, 15 days, and 35 days after inoculation. The results were found to be non-significant for the soil parameters. In the uninoculated seedlings’ (control) seedling trays, salt treatment significantly affected leaf, shoot, root dry weight, shoot height, number of secondary roots, chlorophyll, and mineral contents. While bacterized seedlings sown under saline soil significantly increased leaf (105.17%), shoot (105.62%), root (109.06%) dry weight, leaf number (75.68%), shoot length (92.95%), root length (146.14%), secondary roots (91.23%), and chlorophyll content (−61.49%) as compared to the control (without consortia). The Na and K intake were higher even in the presence of the microbes, but the beneficial effect of the microbe helps plants sustain in the saline environment. The inoculation of microbial consortia produced more secondary roots, which accumulate more minerals and transport substances to the different parts of the plant; thus, it produced higher biomass and growth. Results of the present study revealed that the treatment with microbial consortia could alleviate the deleterious effects of salinity stress and improve the growth of tomato plants under salinity stress. Microbial consortia appear to be the best alternative and cost-effective and sustainable approach for managing soil salinity and improving plant growth under salt stress conditions.


2021 ◽  
Author(s):  
Robert Reuter ◽  
Olga Ferlian ◽  
Mika Tarkka ◽  
Nico Eisenhauer ◽  
Karin Pritsch ◽  
...  

Abstract Mycorrhizal fungi play an important role for the nitrogen (N) supply of trees. The influence of different mycorrhizal types on N acquisition in tree-tree interactions is, however, not well understood, particularly with regard to the competition for growth-limiting N. We studied the effect of competition between temperate forest tree species on their inorganic and organic N acquisition in relation to their mycorrhizal type (i.e., arbuscular mycorrhiza or ectomycorrhiza). In a field experiment, we quantified net N uptake capacity from inorganic and organic N sources using 15N/13C stable isotopes for arbuscular mycorrhizal tree species (i.e., Acer pseudoplatanus L., Fraxinus excelsior L., and Prunus avium L.) as well as ectomycorrhizal tree species (i.e., Carpinus betulus L., Fagus sylvatica L., and Tilia platyphyllos Scop.). All species were grown in intra- and interspecific competition (i.e., monoculture or mixture). Our results showed that N sources were not used complementarily depending on a species´ mycorrhizal association, but their uptake rather depended on the competitor indicating species-specific effects. Generally, ammonium was preferred over glutamine and glutamine over nitrate. In conclusion, our findings suggest that inorganic and organic N acquisition of the studied temperate tree species is less regulated by mycorrhizal association, but rather by the availability of specific N sources in the soil as well as the competitive environment of different tree species.


Sign in / Sign up

Export Citation Format

Share Document